Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 18, 2021

Research data management in clinical neuroscience: the national research data infrastructure initiative

Carsten M. Klingner ORCID logo, Petra Ritter, Stefan Brodoehl ORCID logo, Christian Gaser, André Scherag ORCID logo, Daniel Güllmar ORCID logo, Felix Rosenow ORCID logo, Ulf Ziemann and Otto W. Witte ORCID logo
From the journal Neuroforum


In clinical neuroscience, there are considerable difficulties in translating basic research into clinical applications such as diagnostic tools or therapeutic interventions. This gap, known as the “valley of death,” was mainly attributed to the problem of “small numbers” in clinical neuroscience research, i.e. sample sizes that are too small (Hutson et al., 2017). As a possible solution, it has been repeatedly suggested to systematically manage research data to provide long-term storage, accessibility, and federate data. This goal is supported by a current call of the DFG for a national research data infrastructure (NFDI). This article will review current challenges and possible solutions specific to clinical neuroscience and discuss them in the context of other national and international health data initiatives. A successful NFDI consortium will help to overcome not only the “valley of death” but also promises a path to individualized medicine by enabling big data to produce generalizable results based on artificial intelligence and other methods.


In den klinischen Neurowissenschaften gibt es erhebliche Schwierigkeiten, Erkenntnisse aus der Grundlagenforschung in therapeutische klinische Strategien umzusetzen. Diese Lücke wurde als „Tal des Todes” (Hutson et al., 2017) bezeichnet und hat zu der Ansicht geführt, dass die klinisch-neurowissenschaftliche Forschung nicht optimal aufgestellt ist. Als mögliche Lösung wurde vorgeschlagen, Forschungsdaten systematisch zu verwalten, um eine langfristige Speicherung, Zugänglichkeit und Vernetzung der Daten bereitzustellen. Dieses Ziel wird durch einen aktuellen Aufruf der DFG für eine nationale Forschungsdateninfrastruktur (NFDI) unterstützt. In diesem Artikel werden aktuelle Probleme und mögliche Lösungen der NFDI für die klinische Neurowissenschaft beschrieben. Ein erfolgreiches NFDI-Konsortium wird dazu beitragen, nicht nur das „Tal des Todes“ zu überwinden, sondern verspricht auch einen Weg zur individualisierten Medizin, indem die daraus resultierenden „Big Data“ zusammen mit Methoden des maschinellen Lernens genutzt werden können.

Corresponding author: Carsten M. Klingner, Hans Berger Department of Neurology, University Hospital Jena, Erlanger Allee 101, 07747Jena, Germany; and Biomagnetic Center, Jena University Hospital, Jena, Germany, E-mail:

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: 1738 B2CRC CRC1315 936CRC TRR-CRC 295 RI 2073/6-1 WI 830 12-1

Funding source: Bundesministerium für Bildung und Forschung

Award Identifier / Grant number: 031 5581B FKZ 01ZZ1803C

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors received support from German Research Foundation (DFG) for 1738 B2; Wi 830 12-1; CRC 1315; CRC 936, CRC-TRR 295 and RI 2073/6-1; BMBF Gerontosys JenAge (FKZ 031 5581B); BMBF SMITH (FKZ 01ZZ1803C); EU EpimiRNA (FP7 GA No. 602130), EU H2020 826421, 785907; 945539, ERC 683049; Berlin Institute of Health & Foundation Charité, Johanna Quandt Excellence Initiative, LOEWE Hessen (Center for Personalized Translational Epilepsy Research – CePTER).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


Gorgolewski, K. J., Auer, T., Calhoun, V.D., Craddock, R.C., Das, S., Duff, E.P., Flandin, G., Ghosh, S.S., Glatard, T., Halchenko, Y.O., Handwerker, D.A., et al.. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data3, 160044, in Google Scholar

Heidorn, P. B. (2008). Shedding light on the dark data in the long tail of science. Libr. Trends57, 280–299.10.1353/lib.0.0036Search in Google Scholar

Hutson, P.H., Clark, J.A., and Cross, A.J. (2017). CNS target identification and validation: Avoiding the valley of death or naive optimism? Annu. Rev. Pharmacol. Toxicol.57, 171–187, in Google Scholar

Khvastova, M., Witt, M., and Krefting, D. (2019). Towards interoperability in clinical research: enabling FHIR on the open source research Platform XNAT. Stud. Health Technol. Inf.258, 3–5.10.1007/s10916-020-01600-ySearch in Google Scholar PubMed PubMed Central

Klingner, C.M., Brodoehl, S., Huonker, R., and Witte, O.W. (2016). The processing of somatosensory information shifts from an early parallel into a serial processing mode: a combined fMRI/MEG study. Front. Syst. Neurosci.10, 103, in Google Scholar

Longo, D. L. and Drazen, J. M. (2016). Data sharing. N. Engl. J. Med.374, 276–277, in Google Scholar

Office of the Secretary, HHS (2014). Administrative simplification: change to the compliance date for the International Classification of Diseases, 10th Revision (ICD-10-CM and ICD-10-PCS) medical data code sets. Final rule. Fed. Regist.79, 45128–45134.Search in Google Scholar

Packer, M. (2018). Data sharing in medical research. BMJ360, k510, in Google Scholar

Pernet, C.R., Heunis, S., Herholz, P., and Halchenko, Y.O. (2020). The open brain consent: Informing research participants and obtaining consent to share brain imaging data, in Google Scholar

Pisani, E. and AbouZahr, C. (2010). Sharing health data: good intentions are not enough. Bull. World Health Organ.88, 462–466, in Google Scholar

Rauch, G., Röhmel, J., Gerß, J., Scherag, A., and Hofner, B. (2019). Current challenges in the assessment of ethical proposals-aspects of digitalization and personalization in the healthcare system. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz62, 758–764, in Google Scholar

Ritter, P., Schirner, M., McIntosh, A.R., and Jirsa, V.K. (2013). The virtual brain Integrates computational modeling and multimodal neuroimaging. Brain Connect.3, 121–145, in Google Scholar

Schirner, M., McIntosh, A.R., Jirsa, V., Deco, G., and Ritter, P. (2018). Inferring multi-scale neural mechanisms with brain network modelling. Elife7, e28927, in Google Scholar

Sonntag, H., Haueisen, J., and Maess, B. (2018). Quality assessment of MEG-to-MRI coregistrations. Phys. Med. Biol.63, 075003, in Google Scholar

Terry, R.F., Littler, K., and Olliaro, P.L. (2018). Sharing health research data - the role of funders in improving the impact. F1000Res7, 1641, in Google Scholar

The Lancet (2019). ICD-11. Lancet393, 2275, in Google Scholar

van Panhuis, W.G., Paul, P., Emerson, C., Grefenstette, J., Wilder, R., Herbst, A.J., Heymann, D., and Burke, D.S. (2014). A systematic review of barriers to data sharing in public health. BMC Public Health14, 1144, in Google Scholar

Vines, T. H., Albert, A.Y., Andrew, R.L., Débarre, F., Bock, D.G., Franklin, M.T., Gilbert, K.J., Moore, J.S., Renaut, S., and Rennison, D.J. (2014). The availability of research data declines rapidly with article age. Curr. Biol.24, 94–97, in Google Scholar

Wartenberg, D. and Thompson, W.D. (2010). Privacy versus public health: the impact of current confidentiality rules. Am. J. Public Health100, 407–412, in Google Scholar

Wilkinson, M. D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne, P.E., et al.. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data3, 160018, in Google Scholar

Winter, A., Stäubert, S., Ammon, D., Aiche, S., Beyan, O., Bischoff, V., Daumke, P., Decker, S., Funkat, G., Gewehr, J.E., et al.. (2018). Smart medical information technology for healthcare (SMITH): data integration based on interoperability standards. Methods Inf. Med.57, e92–e105, in Google Scholar

Published Online: 2021-01-18
Published in Print: 2021-02-23

© 2020 Walter de Gruyter GmbH, Berlin/Boston