Accessible Requires Authentication Published by De Gruyter March 18, 2021

Nanoscale imaging of the functional anatomy of the brain

Misa Arizono ORCID logo, Stéphane Bancelin ORCID logo, Philipp Bethge, Ronan Chéreau ORCID logo, Agata Idziak, V.V.G. Krishna Inavalli ORCID logo, Thomas Pfeiffer, Jan Tønnesen ORCID logo and U. Valentin Nägerl ORCID logo
From the journal Neuroforum

Abstract

Progress in microscopy technology has a long history of triggering major advances in neuroscience. Super-resolution microscopy (SRM), famous for shattering the diffraction barrier of light microscopy, is no exception. SRM gives access to anatomical designs and dynamics of nanostructures, which are impossible to resolve using conventional light microscopy, from the elaborate anatomy of neurons and glial cells, to the organelles and molecules inside of them. In this review, we will mainly focus on a particular SRM technique (STED microscopy), and explain a series of technical developments we have made over the years to make it practical and viable in the field of neuroscience. We will also highlight several neurobiological findings on the dynamic structure-function relationship of neurons and glia cells, which illustrate the value of live-cell STED microscopy, especially when combined with other modern approaches to investigate the nanoscale behavior of brain cells.

Zusammenfassung

Fortschritte in der Mikroskopie-Technik haben in der Vergangenheit immer wieder große Durchbrüche in den Neurowissenschaften ausgelöst. Die superauflösende Fluoreszenzmikroskopie, berühmt für die Durchbrechung der Beugungsgrenze der Lichtmikroskopie, bildet hier keine Ausnahme. Sie ermöglicht beispiellosen Zugang zum anatomischen Aufbau und der Dynamik von Nanostrukturen, die mit konventioneller Lichtmikroskopie nicht auflösbar sind, von der ausgefeilten Anatomie der Nerven- und Gliazellen bis hin zu den Organellen und Proteinen in ihrem Inneren. In diesem Überblicksartikel werden wir hauptsächlich auf die STED-Mikroskopie eingehen und eine Reihe von technischen Neuerungen erläutern, die wir im Laufe der Jahre anwendungsspezifisch dafür entwickelt haben. Wir werden dabei einige unserer neurobiologischen Untersuchungen und Resultate über Synapsen, Gliazellen und den Extrazellulär-Raum vorstellen, wo die ,live-cell‘ STED-Mikroskopie in Kombination mit anderen modernen Ansätzen einen entscheidenden Beitrag leisten konnte.


Corresponding author: U. Valentin Nägerl, Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France, E-mail:

Funding source: Human Frontier Science Program (HFSP)

Funding source: Agence Nationale de la Recherche (ANR)

Funding source: Japan Society for the Promotion of Science (JSPS)

Funding source: Marie Skłodowska-Curie Program

Funding source: ATIP – Avenir Program (Inserm)

Funding source: EMBO

Funding source: Fondation pour la Recherche Médicale (FRM)

Funding source: Fédération pour la recherche sur le cerveau (FRC)

Funding source: AXA Foundation

Funding source: Lundbeck Foundation

Funding source: Labex BRAIN

Funding source: Boehringer Ingelheim Fonds

Acknowledgments

We would like to warmly thank all the people who have contributed to our efforts over the years, including lab members and visitors (Angeles Almeida, Aude Panatier, Cordelia Imig, Elena Avignone, Emanuele Murana, Fabien Nadrigny, Julie Angibaud, Kosuke Okuda, Lasani Wijetunge, Luc Mercier, Mark Sherwood, Martin Lenz, Motohiro Nozumi, Stefanie Poll, Sun Kwang Kim) and collaborators (Daniel Cattaert, Daniel Choquet, David DiGregorio, Dmitri Rusakov, Giovanni Marsicano, Jean-Baptiste Sibarita, Jerome Badaut, Martin Fuhrmann, Peter C. Kind, Serge Marty, Stefan W. Hell, Stephane Oliet).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We are also grateful for the financial support from these funding agencies: Human Frontier Science Program (HFSP), Agence Nationale de la Recherche (ANR), Japan Society for the Promotion of Science (JSPS), Marie Skłodowska-Curie Program, ATIP – Avenir Program (Inserm), EMBO, Fondation pour la Recherche Médicale (FRM), Fédération pour la recherche sur le cerveau (FRC), AXA Foundation, Lundbeck Foundation, Labex BRAIN, Boehringer Ingelheim Fonds.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Adrian, M., Kusters, R., Wierenga, C.J., Storm, C., Hoogenraad, C.C., and Kapitein, L.C. (2014). Barriers in the brain: Resolving dendritic spine morphology and compartmentalization. Front. Neuroanat.8, 142, https://doi.org/10.3389/fnana.2014.00142. Search in Google Scholar

Alle, H. and Geiger, J.R. (2006). Combined analog and action potential coding in hippocampal mossy fibers. Science311, 1290–1293, https://doi.org/10.1126/science.1119055. Search in Google Scholar

Angibaud, J., Mascalchi, P., Poujol, C., and Nägerl, U.V. (2020). A simple tissue clearing method for increasing the depth penetration of STED microscopy of fixed brain slices. J. Phys. Appl. Phys.53, 184001, https://doi.org/10.1088/1361-6463/ab6f1b. Search in Google Scholar

Arizono, M., Inavalli, V.V.G.K., and Nägerl, U.V. (2021). Super-resolution shadow imaging reveals local remodeling of astrocytic microstructures and brain extracellular space after osmotic challenge. bioRxiv, https://doi.org/10.1101/2021.01.05.425369. Search in Google Scholar

Arizono, M., Inavalli, V.V.G.K., Panatier, A., Pfeiffer, T., Angibaud, J., Levet, F., Ter Veer, M.J.T., Stobart, J., Bellocchio, L., Mikoshiba, K., et al.. (2020). Structural basis of astrocytic Ca2+ signals at tripartite synapses. Nat. Commun.11, 1906, https://doi.org/10.1038/s41467-020-15648-4. Search in Google Scholar

Attardo, A., Fitzgerald, J.E., and Schnitzer, M.J. (2015). Impermanence of dendritic spines in live adult CA1 hippocampus. Nature523, 592–596, https://doi.org/10.1038/nature14467. Search in Google Scholar

Balzarotti, F., Eilers, Y., Gwosch, K.C., Gynnå, A.H., Westphal, V., Stefani, F.D., Elf, J., and Hell, S.W. (2017). Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science355, 606–612, https://doi.org/10.1126/science.aak9913. Search in Google Scholar

Bancelin, S., Mercier, L., Murana, E., and Nägerl, V. (2021). Aberration correction in STED microscopy to increase imaging depth in living brain tissue. bioRxiv, https://doi.org/10.1101/2021.01.05.425408. Search in Google Scholar

Bethge, P., Chereau, R., Avignone, E., Marsicano, G., and Nägerl, U.V. (2013). Two-photon excitation STED microscopy in two colors in acute brain slices. Biophys. J.104, 778–785, https://doi.org/10.1016/j.bpj.2012.12.054. Search in Google Scholar

Chéreau, R., Saraceno, G.E., Angibaud, J., Cattaert, D., and Nägerl, U.V. (2017). Superresolution imaging reveals activity-dependent plasticity of axon morphology linked to changes in action potential conduction velocity. Proc. Natl. Acad. Sci. U. S. A.114, 1401–1406, https://doi.org/10.1073/pnas.1607541114. Search in Google Scholar

Debanne, D., Campanac, E., Bialowas, A., Carlier, E., and Alcaraz, G. (2011). Axon physiology. Physiol. Rev.91, 555–602, https://doi.org/10.1152/physrev.00048.2009. Search in Google Scholar

DeFelipe, J. (2009). Cajal’s place in the history of neuroscience. Encyclopedia of Neuroscience. Squire, L.R., ed. (Oxford: Academic Press), pp. 497–507. Search in Google Scholar

Fürstenberg, A. and Heilemann, M. (2013). Single-molecule localization microscopy-near-molecular spatial resolution in light microscopy with photoswitchable fluorophores. Phys. Chem. Chem. Phys.15, 14919–14930, https://doi.org/10.1039/c3cp52289j. Search in Google Scholar

Gu, L., Kleiber, S., Schmid, L., Nebeling, F., Chamoun, M., Steffen, J., Wagner, J., and Fuhrmann, M. (2014). Long-term in vivo imaging of dendritic spines in the hippocampus reveals structural plasticity. J. Neurosci.34, 13948–13953, https://doi.org/10.1523/jneurosci.1464-14.2014. Search in Google Scholar

Hell, S.W. (2007). Far-field optical nanoscopy. Science316, 1153–1158, https://doi.org/10.1126/science.1137395. Search in Google Scholar

Holtmaat, A., Wilbrecht, L., Knott, G.W., Welker, E., and Svoboda, K. (2006). Experience-dependent and cell-type-specific spine growth in the neocortex. Nature441, 979–983, https://doi.org/10.1038/nature04783. Search in Google Scholar

Inavalli, V.V.G.K., Lenz, M.O., Butler, C., Angibaud, J., Compans, B., Levet, F., Tønnesen, J., Rossier, O., Giannone, G., Thoumine, O., et al.. (2019). A super-resolution platform for correlative live single-molecule imaging and STED microscopy. Nat. Methods16, 1263–1268. https://doi.org/10.1038/s41592-019-0611-8. Search in Google Scholar

Nägerl, U.V., Willig, K.I., Hein, B., Hell, S.W., and Bonhoeffer, T. (2008). Live-cell imaging of dendritic spines by STED microscopy. Proc. Natl. Acad. Sci. U. S. A.105, 18982–18987, https://doi.org/10.1073/pnas.0810028105. Search in Google Scholar

Pfeiffer, T., Poll, S., Bancelin, S., Angibaud, J., Inavalli, V.K., Keppler, K., Mittag, M., Fuhrmann, M., and Nägerl, U.V. (2018). Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo. Elife7, https://doi.org/10.7554/elife.34700. Search in Google Scholar

Puthukodan, S., Murtezi, E., Jacak, J., and Klar, T.A. (2020). Localization STED (LocSTED) microscopy with 15 nm resolution. Nanophotonics9, 783–792, https://doi.org/10.1515/nanoph-2019-0398. Search in Google Scholar

Rama, S., Zbili, M., and Debanne, D. (2018). Signal propagation along the axon. Curr. Opin. Neurobiol.51, 37–44, https://doi.org/10.1016/j.conb.2018.02.017. Search in Google Scholar

Rodríguez, C. and Ji, N. (2018). Adaptive optical microscopy for neurobiology. Curr. Opin. Neurobiol.50, 83–91, https://doi.org/10.1016/j.conb.2018.01.011. Search in Google Scholar

Rusakov, D.A. (2015). Disentangling calcium-driven astrocyte physiology. Nat. Rev. Neurosci.16, 226–233, https://doi.org/10.1038/nrn3878. Search in Google Scholar

Sasaki, T., Matsuki, N., and Ikegaya, Y. (2011). Action-potential modulation during axonal conduction. Science331, 599–601, https://doi.org/10.1126/science.1197598. Search in Google Scholar

Stolp, B., Thelen, F., Ficht, X., Altenburger, L.M., Ruef, N., Inavalli, V.V.G.K., Germann, P., Page, N., Moalli, F., Raimondi, A., et al.. (2020). Salivary gland macrophages and tissue-resident CD8. Sci. Immunol.5, https://doi.org/10.1126/sciimmunol.aaz4371. Search in Google Scholar

Tønnesen, J., Inavalli, V.V.G.K., and Nägerl, U.V. (2018). Super-resolution imaging of the extracellular space in living brain tissue. Cell172, 1108–1121, e1115. Search in Google Scholar

Tønnesen, J., Katona, G., Rózsa, B., and Nägerl, U.V. (2014). Spine neck plasticity regulates compartmentalization of synapses. Nat. Neurosci.17, 678–685. Search in Google Scholar

Tønnesen, J., Nadrigny, F., Willig, K.I., Wedlich-Söldner, R., and Nägerl, U.V. (2011). Two-color STED microscopy of living synapses using a single laser-beam pair. Biophys. J.101, 2545–2552. Search in Google Scholar

Tønnesen, J. and Nägerl, U.V. (2013). Superresolution imaging for neuroscience. Exp. Neurol.242, 33–40. Search in Google Scholar

Tønnesen, J. and Nägerl, U.V. (2016). Dendritic spines as tunable regulators of synaptic signals. Front. Psychiatr.7, 101. Search in Google Scholar

Urban, N.T., Willig, K.I., Hell, S.W., and Nägerl, U.V. (2011). STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys. J.101, 1277–1284, https://doi.org/10.1016/j.bpj.2011.07.027. Search in Google Scholar

Xie, L., Kang, H., Xu, Q., Chen, M.J., Liao, Y., Thiyagarajan, M., O’Donnell, J., Christensen, D.J., Nicholson, C., Iliff, J.J., et al.. (2013). Sleep drives metabolite clearance from the adult brain. Science342, 373–377, https://doi.org/10.1126/science.1241224. Search in Google Scholar

Yuste, R. (2013). Electrical compartmentalization in dendritic spines. Annu. Rev. Neurosci.36, 429–449, https://doi.org/10.1146/annurev-neuro-062111-150455. Search in Google Scholar

Published Online: 2021-03-18
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston