Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 25, 2021

The neuronal correlates of the avian magnetic senses

  • Katrin Haase

    Katrin Haase studied Neurobiology at Carl von Ossietzky Universität Oldenburg and Georg-August-Universität Göttingen. She joined the working group “Neurosensory Sciences” of Prof. Dr. Mouritsen at Universität Oldenburg as a PhD student. Within the SFB 1372 “Magnetoreception and Navigation in Vertebrates”, Katrin is interested in the neuronal correlates underlying the processing of magnetic positional information in night-migratory songbirds.

    ORCID logo
    , Isabelle Musielak

    Isabelle Musielak did her bachelor and master’s degree in the field of neurobiology at Universität Oldenburg. She joined the “Neurosensory Science” group of Prof. Dr. Mouritsen as a PhD student associated with the SFB 1372 “Magnetoreception and Navigation in Vertebrates”. Within the SFB, Isabelle focusses on the multisensory integration of navigational information in the avian telencephalon.

    ORCID logo
    and Dominik Heyers

    Dominik Heyers studied Neurobiology in Frankfurt/Main. During his PhD at University Medical School Essen, Dominik investigated molecular mechanisms in the developing avian brain. He started his first postdoc at Universität Oldenburg on the neuronal correlates underlying avian magnetoreception. His work, funded by University Oldenburg, DFG, VolkswagenStiftung and DAAD, became instrumental in identifying the neuroanatomical foundations of the visual and trigeminal magnetic senses. As a permanent senior researcher, he is part of SFB 1372 “Magnetoreception and Navigation in Vertebrates” funded by DFG.

    ORCID logo EMAIL logo
From the journal Neuroforum

Abstract

In addition to other natural orientation cues such as the stars, the sun, landmarks and olfactory cues, migrating birds possess the ability to orient by the Earth’s magnetic field. In recent years, neuroscientific research has pinpointed brain regions and connecting neuronal pathways that seem to be involved in processing magnetic information. To date, the most compelling neuroanatomical and behavioural evidence comes from the visual and trigeminal sensory systems. We expect that navigational information from both systems could be integrated in higher-order brain structures, such as the hippocampus and the “decision-making” caudolateral nidopallium. This review summarizes the current state of research on the neurosensory basis of magnetoreception in birds.

Zusammenfassung

Neben verschiedenen in der Natur vorkommenden Orientierungsreizen wie z.B. den Sternen, der Sonne, visuellen Landmarken sowie olfaktorischen Reizen, nutzen Zugvögel das Erdmagnetfeld zur Orientierung. Neurowissenschaftliche Forschungsansätze haben in den letzten Jahren dazu beigetragen, mögliche an der Magnetrezeption beteiligte Hirnstrukturen sowie ihre Verbindungsstrukturen zu identifizieren. Neurobiologische sowie Verhaltensstudien deuten aktuell auf eine Beteiligung des visuellen sowie trigeminalen Systems an der Magnetrezeption hin. Wir erwarten, dass Navigationsinformationen aus beiden Systemen in hippocampalen sowie präfrontalen Strukturen, wie dem caudolateralen Nidopallium, integriert werden. Dieser Übersichtsartikel bildet den aktuellen Stand der Wissenschaft zu den neurosensorischen Korrelaten der Magnetrezeption von Vögeln ab.


Corresponding author: Dominik Heyers, AG “Neurosensory Sciences”, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany; and Research Centre for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany, E-mail:
Katrin Haase and Isabelle Musielak contributed equally to this work.

Award Identifier / Grant number: 395940726 – SFB 1372

About the authors

Katrin Haase

Katrin Haase studied Neurobiology at Carl von Ossietzky Universität Oldenburg and Georg-August-Universität Göttingen. She joined the working group “Neurosensory Sciences” of Prof. Dr. Mouritsen at Universität Oldenburg as a PhD student. Within the SFB 1372 “Magnetoreception and Navigation in Vertebrates”, Katrin is interested in the neuronal correlates underlying the processing of magnetic positional information in night-migratory songbirds.

Isabelle Musielak

Isabelle Musielak did her bachelor and master’s degree in the field of neurobiology at Universität Oldenburg. She joined the “Neurosensory Science” group of Prof. Dr. Mouritsen as a PhD student associated with the SFB 1372 “Magnetoreception and Navigation in Vertebrates”. Within the SFB, Isabelle focusses on the multisensory integration of navigational information in the avian telencephalon.

Dominik Heyers

Dominik Heyers studied Neurobiology in Frankfurt/Main. During his PhD at University Medical School Essen, Dominik investigated molecular mechanisms in the developing avian brain. He started his first postdoc at Universität Oldenburg on the neuronal correlates underlying avian magnetoreception. His work, funded by University Oldenburg, DFG, VolkswagenStiftung and DAAD, became instrumental in identifying the neuroanatomical foundations of the visual and trigeminal magnetic senses. As a permanent senior researcher, he is part of SFB 1372 “Magnetoreception and Navigation in Vertebrates” funded by DFG.

Acknowledgements

The authors cordially thank Henrik Mouritsen for editing the manuscript.

  1. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved submission.

  2. Research funding: Our research is generously funded by Deutsche Forschungsgemeinschaft (DFG), SFB 1372 “Magnetoreception and Navigation in Vertebrates” (project number: 395940726).

  3. Conflict of interest statement: The authors declare no conflicts of interest.

References

Atoji, Y. and Wild, J.M. (2004). Fiber connections of the hippocampal formation and septum and subdivisions of the hippocampal formation in the pigeon as revealed by tract tracing and kainic acid lesions. J. Comp. Neurol. 475, 426–461, https://doi.org/10.1002/cne.20186.Search in Google Scholar PubMed

Atoji, Y. and Wild, J.M. (2012). Afferent and efferent projections of the mesopallium in the pigeon (Columba livia). J. Comp. Neurol. 520, 717–741, https://doi.org/10.1002/cne.22763.Search in Google Scholar PubMed

Berthold, P. (2017). Vogelzug. Eine aktuelle Gesamtübersicht (Darmstadt: WBG Academic).Search in Google Scholar

Bischof, H.J., Eckmeier, D., Keary, N., Löwel, S., Mayer, U., and Michael, N. (2016). Multiple visual field representations in the visual Wulst of a laterally eyed bird, the Zebra Finch (Taeniopygia guttata). PloS One 11, e0154927, https://doi.org/10.1371/journal.pone.0154927.Search in Google Scholar PubMed PubMed Central

Bolte, P., Einwich, A., Seth, P.K., Chetverikova, R., Heyers, D., Wojahn, I., Janssen‐Bienhold, U., Feederle, R., Hore, P.J., Dedek, K., et al.. (2021). Cryptochrome 1a localisation in light- and dark-adapted retinae of several migratory and non-migratory bird species: No signs of light-dependent activation. Ethol. Ecol. Evol 33, 248–272, https://doi.org/10.1080/03949370.2020.1870571.Search in Google Scholar

Chernetsov, N., Kishkinev, D., and Mouritsen, H. (2008). A long-distance avian migrant compensates for longitudinal displacement during spring migration. Curr. Biol. 18, 188–190, https://doi.org/10.1016/j.cub.2008.01.018.Search in Google Scholar PubMed

Chernetsov, N., Pakhomov, A., Davydov, A., Cellarius, F., and Mouritsen, H. (2020). No evidence for the use of magnetic declination for migratory navigation in two songbird species. PloS One 15, e0232136, https://doi.org/10.1371/journal.pone.0232136.Search in Google Scholar PubMed PubMed Central

Chernetsov, N., Pakhomov, A., Kobylkov, D., Kishkinev, D., Holland, R.A., and Mouritsen, H. (2017). Migratory Eurasian reed warblers can use magnetic declination to solve the longitude problem. Curr. Biol. 27, 2647–2651, https://doi.org/10.1016/j.cub.2017.07.024.Search in Google Scholar PubMed

Einwich, A., Dedek, K., Seth, P.K., Laubinger, S., and Mouritsen, H. (2020). A novel isoform of cryptochrome 4 (Cry4b) is expressed in the retina of a night-migratory songbird. Sci. Rep. 10, 15794, https://doi.org/10.1038/s41598-020-72579-2.Search in Google Scholar PubMed PubMed Central

Elbers, D., Bulte, M., Bairlein, F., Mouritsen, H., and Heyers, D. (2017). Magnetic activation in the brain of the migratory northern wheatear (Oenanthe oenanthe). J. Comp. Physiol. 203, 591–600, https://doi.org/10.1007/s00359-017-1167-7.Search in Google Scholar PubMed

Engels, S., Hein, C.M., Lefeldt, N., Prior, H., and Mouritsen, H. (2012). Night-migratory songbirds possess a magnetic compass in both eyes. PloS One 7, e43271, https://doi.org/10.1371/journal.pone.0043271.Search in Google Scholar PubMed PubMed Central

Engels, S., Treiber, C.D., Salzer, M.C., Michalik, A., Ushakova, L., Keays, D.A., Mouritsen, H., and Heyers, D. (2018). Lidocaine is a nocebo treatment for trigeminally mediated magnetic orientation in birds. J. R. Soc. Interface 15, 20180124, https://doi.org/10.1098/rsif.2018.0124.Search in Google Scholar PubMed PubMed Central

Feenders, G., Liedvogel, M., Rivas, M., Zapka, M., Horita, H., Hara, E., Wada, K., Mouritsen, H., and Jarvis, E.D. (2008). Molecular mapping of movement-associated areas in the avian brain: A motor theory for vocal learning origin. PloS One 3, e1768, https://doi.org/10.1371/journal.pone.0001768.Search in Google Scholar PubMed PubMed Central

Fleissner, G., Holtkamp-Rötzler, E., Hanzlik, M., Winklhofer, M., Fleissner, G., Petersen, N., and Wiltschko, W. (2003). Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J. Comp. Neurol. 458, 350–360, https://doi.org/10.1002/cne.10579.Search in Google Scholar PubMed

Frost, B.J. and Mouritsen, H. (2006). The neural mechanisms of long distance animal navigation. Curr. Opin. Neurobiol. 16, 481–488, https://doi.org/10.1016/j.conb.2006.06.005.Search in Google Scholar PubMed

Gagliardo, A. (2013). Forty years of olfactory navigation in birds. J. Exp. Biol. 216, 2165–2171, https://doi.org/10.1242/jeb.070250.Search in Google Scholar PubMed

Günther, A., Einwich, A., Sjulstok, E., Feederle, R., Bolte, P., Koch, K.-W., Solov’yov, I.A., and Mouritsen, H. (2018). Double-cone localization and seasonal expression pattern suggest a role in magnetoreception for European robin cryptochrome 4. Curr. Biol. 28, 211–223, https://doi.org/10.1016/j.cub.2017.12.003.Search in Google Scholar PubMed

Güntürkün, O. (2000). Sensory Physiology: Vision. Sturkie’s Avian Physiology. G. Whittow, ed. (Elsevier), pp. 1–19.10.1016/B978-012747605-6/50002-XSearch in Google Scholar

Güntürkün, O. (2005). The avian ‘prefrontal cortex’ and cognition. Curr. Opin. Neurobiol. 15, 686–693, https://doi.org/10.1016/j.conb.2005.10.003.Search in Google Scholar PubMed

Hein, C.M., Engels, S., Kishkinev, D., and Mouritsen, H. (2011). Robins have a magnetic compass in both eyes. Nature 471, E11–E12, https://doi.org/10.1038/nature09875.Search in Google Scholar PubMed

Hein, C.M., Zapka, M., Heyers, D., Kutzschbauch, S., Schneider, N.L., and Mouritsen, H. (2010). Night-migratory garden warblers can orient with their magnetic compass using the left, the right or both eyes. J. R. Soc. Interface 7, S227–S233, https://doi.org/10.1098/rsif.2009.0376.focus.Search in Google Scholar PubMed PubMed Central

Heyers, D., Elbers, D., Bulte, M., Bairlein, F., and Mouritsen, H. (2017). The magnetic map sense and its use in fine-tuning the migration programme of birds. J. Comp. Physiol. 203, 491–497, https://doi.org/10.1007/s00359-017-1164-x.Search in Google Scholar

Heyers, D., Manns, M., Luksch, H., Güntürkün, O., and Mouritsen, H. (2007). A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PloS One 2, e937, https://doi.org/10.1371/journal.pone.0000937.Search in Google Scholar

Heyers, D., Zapka, M., Hoffmeister, M., Wild, J.M., and Mouritsen, H. (2010). Magnetic field changes activate the trigeminal brainstem complex in a migratory bird. Proc. Natl. Acad. Sci. U. S. A. 107, 9394–9399, https://doi.org/10.1073/pnas.0907068107.Search in Google Scholar

Holland, R.A. (2010). Differential effects of magnetic pulses on the orientation of naturally migrating birds. J. R. Soc. Interface 7, 1617–1625, https://doi.org/10.1098/rsif.2010.0159.Search in Google Scholar

Hore, P.J. and Mouritsen, H. (2016). The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344, https://doi.org/10.1146/annurev-biophys-032116-094545.Search in Google Scholar

Kishkinev, D., Chernetsov, N., Heyers, D., and Mouritsen, H. (2013). Migratory reed warblers need intact trigeminal nerves to correct for a 1000 km eastward displacement. PloS One 8, e65847, https://doi.org/10.1371/journal.pone.0065847.Search in Google Scholar

Kishkinev, D., Packmor, F., Zechmeister, T., Winkler, H.-C., Chernetsov, N., Mouritsen, H., and Holland, R. (2021). Navigation by extrapolation of geomagnetic cues in a migratory songbird. Curr. Biol. 31, 1563–1569.e4, https://doi.org/10.1016/j.cub.2021.01.051.Search in Google Scholar

Kobylkov, D., Schwarze, S., Michalik, B., Winklhofer, M., Mouritsen, H., and Heyers, D. (2020). A newly identified trigeminal brain pathway in a night-migratory bird could be dedicated to transmitting magnetic map information. Proc. R. Soc. Ser. B 287, 20192788, https://doi.org/10.1098/rspb.2019.2788.Search in Google Scholar

Krebs, J.R., Sherry, D.F., Healy, S.D., Perry, V.H., and Vaccarino, A.L. (1989). Hippocampal specialization of food-storing birds. Proc. Natl. Acad. Sci. U. S. A. 86, 1388–1392, https://doi.org/10.1073/pnas.86.4.1388.Search in Google Scholar

Kröner, S. and Güntürkün, O. (1999). Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columba livia): a retro- and anterograde pathway tracing study. J. Comp. Neurol. 407, 228–260, https://doi.org/10.1002/(sici)1096-9861(19990503)407:2<228::aid-cne6>3.0.co;2-2.10.1002/(SICI)1096-9861(19990503)407:2<228::AID-CNE6>3.0.CO;2-2Search in Google Scholar

Lefeldt, N., Heyers, D., Schneider, N.L., Engels, S., Elbers, D., and Mouritsen, H. (2014). Magnetic field-driven induction of ZENK in the trigeminal system of pigeons (Columba livia). J. R. Soc. Interface 11, 20140777, https://doi.org/10.1098/rsif.2014.0777.Search in Google Scholar PubMed PubMed Central

Liedvogel, M., Feenders, G., Wada, K., Troje, N.F., Jarvis, E.D., and Mouritsen, H. (2007). Lateralized activation of Cluster N in the brains of migratory songbirds. Eur. J. Neurosci. 25, 1166–1173, https://doi.org/10.1111/j.1460-9568.2007.05350.x.Search in Google Scholar PubMed PubMed Central

Lohmann, K.J. (2010). Q&A: Animal behaviour: Magnetic-field perception. Nature 464, 1140–1142, https://doi.org/10.1038/4641140a.Search in Google Scholar PubMed

Maeda, K., Robinson, A.J., Henbest, K.B., Hogben, H.J., Biskup, T., Ahmad, M., Schleicher, E., Weber, S., Timmel, C.R., and Hore, P.J. (2012). Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc. Natl. Acad. Sci. U.S.A. 109, 4774–4779, https://doi.org/10.1073/pnas.1118959109.Search in Google Scholar PubMed PubMed Central

Mora, C.V., Davison, M., Wild, J.M., and Walker, M.M. (2004). Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432, 508–511, https://doi.org/10.1038/nature03077.Search in Google Scholar PubMed

Mouritsen, H. (2012). Sensory biology: Search for the compass needles. Nature 484, 320–321, https://doi.org/10.1038/484320a.Search in Google Scholar PubMed

Mouritsen, H. (2015). Magnetoreception in Birds and Its Use for Long-Distance Migration. Sturkie’s Avian Physiology. C. Scanes, ed. (Elsevier), pp. 113–133.10.1016/B978-0-12-819770-7.00040-2Search in Google Scholar

Mouritsen, H. (2018). Long-distance navigation and magnetoreception in migratory animals. Nature 558, 50–59, https://doi.org/10.1038/s41586-018-0176-1.Search in Google Scholar PubMed

Mouritsen, H., Feenders, G., Liedvogel, M., Wada, K., and Jarvis, E.D. (2005). Night-vision brain area in migratory songbirds. Proc. Natl. Acad. Sci. U. S. A. 102, 8339–8344, https://doi.org/10.1073/pnas.0409575102.Search in Google Scholar PubMed PubMed Central

Mouritsen, H., Heyers, D., and Güntürkün, O. (2016). The neural basis of long-distance navigation in birds. Annu. Rev. Physiol. 78, 133–154, https://doi.org/10.1146/annurev-physiol-021115-105054.Search in Google Scholar PubMed

Munro, U., Munro, J.A., Phillips, J.B., Wiltschko, R., and Wiltschko, W. (1997). Evidence for a magnetite-based navigational “map” in birds. Naturwissenschaften 84, 26–28, https://doi.org/10.1007/s001140050343.Search in Google Scholar

Nimpf, S., Nordmann, G.C., Kagerbauer, D., Malkemper, E.P., Landler, L., Papadaki-Anastasopoulou, A., Ushakova, L., Wenninger-Weinzierl, A., Novatchkova, M., Vincent, P., et al.. (2019). A putative mechanism for magnetoreception by electromagnetic induction in the pigeon inner ear. Curr. Biol. 29, 4052–4059, https://doi.org/10.1016/j.cub.2019.09.048.Search in Google Scholar

Pakhomov, A., Anashina, A., Heyers, D., Kobylkov, D., Mouritsen, H., and Chernetsov, N. (2018). Magnetic map navigation in a migratory songbird requires trigeminal input. Sci. Rep. 8, 11975, https://doi.org/10.1038/s41598-018-30477-8.Search in Google Scholar

Pravosudov, V.V., Kitaysky, A.S., and Omanska, A. (2006). The relationship between migratory behaviour, memory and the hippocampus: An intraspecific comparison. Proc. Biol. Sci. 273, 2641–2649, https://doi.org/10.1098/rspb.2006.3624.Search in Google Scholar

Semm, P. and Beason, R.C. (1990). Responses to small magnetic variations by the trigeminal system of the bobolink. Brain Res. Bull. 25, 735–740, https://doi.org/10.1016/0361-9230(90)90051-z.Search in Google Scholar

Shanahan, M., Bingman, V.P., Shimizu, T., Wild, M., and Güntürkün, O. (2013). Large-scale network organization in the avian forebrain: A connectivity matrix and theoretical analysis. Front. Comput. Neurosci. 7, 89, https://doi.org/10.3389/fncom.2013.00089.Search in Google Scholar PubMed PubMed Central

Shaw, J., Boyd, A., House, M., Woodward, R., Mathes, F., Cowin, G., Saunders, M., and Baer, B. (2015). Magnetic particle-mediated magnetoreception. J. R. Soc. Interface 12, 20150499, https://doi.org/10.1098/rsif.2015.0499.Search in Google Scholar PubMed PubMed Central

Shimizu, T., Bowers, A.N., Budzynski, C.A., Kahn, M.C., and Bingman, V.P. (2004). What does a pigeon (Columba livia) brain look like during homing? Selective examination of ZENK expression. Behav. Neurosci. 118, 845–851, https://doi.org/10.1037/0735-7044.118.4.845.Search in Google Scholar PubMed

Thorup, K., Bisson, I.-A., Bowlin, M.S., Holland, R.A., Wingfield, J.C., Ramenofsky, M., and Wikelski, M. (2007). Evidence for a navigational map stretching across the continental U.S. in a migratory songbird. Proc. Natl. Acad. Sci. U. S. A. 104, 18115–18119, https://doi.org/10.1073/pnas.0704734104.Search in Google Scholar PubMed PubMed Central

Treiber, C.D., Salzer, M., Breuss, M., Ushakova, L., Lauwers, M., Edelman, N., and Keays, D.A. (2013). High resolution anatomical mapping confirms the absence of a magnetic sense system in the rostral upper beak of pigeons. Commun. Integr. Biol. 6, e24859, https://doi.org/10.4161/cib.24859.Search in Google Scholar PubMed PubMed Central

Treiber, C.D., Salzer, M.C., Riegler, J., Edelman, N., Sugar, C., Breuss, M., Pichler, P., Cadiou, H., Saunders, M., Lythgoe, M., et al.. (2012). Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484, 367–370, https://doi.org/10.1038/nature11046.Search in Google Scholar

Wild, J.M. and Zeigler, H.P. (1996). Central projections and somatotopic organisation of trigeminal primary afferents in pigeon (Columba livia). J. Comp. Neurol. 368, 136–152, https://doi.org/10.1002/(sici)1096-9861(19960422)368:1<136::aid-cne9>3.0.co;2-4.10.1002/(SICI)1096-9861(19960422)368:1<136::AID-CNE9>3.0.CO;2-4Search in Google Scholar

Wiltschko, W., Munro, U., Ford, H., and Wiltschko, R. (1993). Red light disrupts magnetic orientation of migratory birds. Nature 364, 525–527, https://doi.org/10.1038/364525a0.Search in Google Scholar

Wiltschko, W., Munro, U., Ford, H., and Wiltschko, R. (2009). Avian orientation: The pulse effect is mediated by the magnetite receptors in the upper beak. Proc. Biol. Sci. 276, 2227–2232, https://doi.org/10.1098/rspb.2009.0050.Search in Google Scholar

Wiltschko, W. and Wiltschko, R. (1972). Magnetic compass of European robins. Science 176, 62–64, https://doi.org/10.1126/science.176.4030.62.Search in Google Scholar

Wiltschko, R. and Wiltschko, W. (1995). Magnetic Orientation in Animals (Berlin: Springer).10.1007/978-3-642-79749-1Search in Google Scholar

Winklhofer, M. and Kirschvink, J.L. (2010). A quantitative assessment of torque-transducer models for magnetoreception. J. R. Soc. Interface 7, 273–289, https://doi.org/10.1098/rsif.2009.0435.focus.Search in Google Scholar

Wu, L.Q. and Dickman, J.D. (2011). Magnetoreception in an avian brain in part mediated by inner ear lagena. Curr. Biol. 21, 418–423, https://doi.org/10.1016/j.cub.2011.01.058.Search in Google Scholar

Wynn, J., Padget, O., Mouritsen, H., Perrins, C., and Guilford, T. (2020). Natal imprinting to the Earth’s magnetic field in a pelagic seabird. Curr. Biol. 30, 2869–2873.e2, https://doi.org/10.1016/j.cub.2020.05.039.Search in Google Scholar

Xu, J., Jarocha, L.E., Zollitsch, T., Konowalczyk, M., Henbest, K.B., Richert, S., Golesworthy, M.J., Schmidt, J., Déjean, V., Sowood, D.J.C., et al.. (2021). Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature 594, 535–540, https://doi.org/10.1038/s41586-021-03618-9.Search in Google Scholar

Zapka, M., Heyers, D., Hein, C.M., Engels, S., Schneider, N.L., Hans, J., Weiler, S., Dreyer, D., Kishkinev, D., Wild, J.M., et al.. (2009). Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461, 1274–1277, https://doi.org/10.1038/nature08528.Search in Google Scholar PubMed

Zoltowski, B.D., Chelliah, Y., Wickramaratne, A., Jarocha, L., Karki, N., Xu, W., Mouritsen, H., Hore, P.J., Hibbs, R.E., Green, C.B., et al.. (2019). Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon. Proc. Natl. Acad. Sci. U. S. A. 116, 19449–19457, https://doi.org/10.1073/pnas.1907875116.Search in Google Scholar PubMed PubMed Central

Published Online: 2021-06-25
Published in Print: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/nf-2021-0008/pdf
Scroll to top button