Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 20, 2021

Neurobiology of phenotypic plasticity in the light of climate change

  • Linda C. Weiss

    Linda C. Weiss studied Biology at the Ruhr University Bochum. After receiving her Diploma degree in Neurobiology in 2007 under the supervision of Prof. Dr. K.P. Hoffmann, she started her doctoral degree in 2008 at the Department of Animal Ecology, Evolution and Biodiversity in the lab of Prof. Dr. R. Tollrian. After receiving her Ph.D. in 2011, she moved to the LMU Munich and Christian Laforsch for a guest scientist stay. She obtained a scholarship by the Deutsche Akademie der Naturforscher Leopoldina and joined Prof. Dr. John K. Colbourne’s Environmental Genomics group in Birmingham, UK, as a postdoctoral fellow. Since 2016, she works as a senior group leader at the Ruhr University Bochum. Here, she studies the molecular and neuronal mechanisms underlying phenotypic plasticity in aquatic animals.

    EMAIL logo
From the journal Neuroforum


Phenotypic plasticity describes the ability of an organism with a given genotype to respond to changing environmental conditions through the adaptation of the phenotype. Phenotypic plasticity is a widespread means of adaptation, allowing organisms to optimize fitness levels in changing environments. A core prerequisite for adaptive predictive plasticity is the existence of reliable cues, i.e. accurate environmental information about future selection on the expressed plastic phenotype. Furthermore, organisms need the capacity to detect and interpret such cues, relying on specific sensory signalling and neuronal cascades. Subsequent neurohormonal changes lead to the transformation of phenotype A into phenotype B. Each of these activities is critical for survival. Consequently, anything that could impair an animal’s ability to perceive important chemical information could have significant ecological ramifications. Climate change and other human stressors can act on individual or all of the components of this signalling cascade. In consequence, organisms could lose their adaptive potential, or in the worst case, even become maladapted. Therefore, it is key to understand the sensory systems, the neurobiology and the physiological adaptations that mediate organisms’ interactions with their environment. It is, thus, pivotal to predict the ecosystem-wide effects of global human forcing. This review summarizes current insights on how climate change affects phenotypic plasticity, focussing on how associated stressors change the signalling agents, the sensory systems, receptor responses and neuronal signalling cascades, thereby, impairing phenotypic adaptations.


Die phänotypische Plastizität beschreibt die Fähigkeit eines Organismus mit einem bestimmten Genotyp, auf veränderte Umweltbedingungen durch die Anpassung des Phänotyps zu reagieren. Die phänotypische Plastizität ist ein weit verbreitetes Mittel der Anpassung, das es Organismen ermöglicht, ihre Fitness in einer sich verändernden Umwelt zu optimieren. Eine wesentliche Voraussetzung für die adaptive prädiktive Plastizität ist das Vorhandensein zuverlässiger Hinweise, d. h. genauer Umweltinformationen über die künftige Selektion auf den ausgeprägten plastischen Phänotyp. Darüber hinaus müssen Organismen in der Lage sein, solche Hinweise zu erkennen und zu interpretieren, wobei sie sich auf spezielle sensorische Signalwege und neuronale Kaskaden stützen. Die anschließenden neurohormonellen Veränderungen führen zur Umwandlung von Phänotyp A in Phänotyp B. Jede dieser Aktivitäten ist für das Überleben entscheidend. Folglich könnte alles was die Fähigkeit eines Tieres wichtige chemische Informationen wahrzunehmen beeinträchtigen könnte, erhebliche ökologische Auswirkungen haben. Der Klimawandel und andere menschliche Stressfaktoren können auf einzelne oder alle Komponenten dieser Signalkaskade einwirken. In der Folge könnten Organismen ihr Anpassungspotenzial verlieren oder können im schlimmsten Fall sogar Fehlanpassungen entwickeln. Daher ist es von entscheidender Bedeutung, die sensorischen Systeme, die Neurobiologie und die physiologischen Anpassungen zu verstehen, die die Interaktionen von Organismen mit ihrer Umwelt vermitteln. Es ist daher von zentraler Bedeutung, die Auswirkungen globaler menschlicher Einflüsse auf das gesamte Ökosystem vorherzusagen. Dieser Übersichtsartikel fasst die aktuellen Erkenntnisse darüber zusammen, wie sich der Klimawandel auf die phänotypische Plastizität auswirkt, wobei der Schwerpunkt darauf liegt, wie die damit verbundenen Stressoren die Signalstoffe, die sensorischen Systeme, die Rezeptorantworten und die neuronalen Signalkaskaden verändern und dadurch die phänotypischen Anpassungen beeinträchtigen.

Corresponding author: Linda C. Weiss, Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany, E-mail:

Funding source: Deutsche Forschungsgemeinschaft 10.13039/501100001659

Award Identifier / Grant number: WE6019/2-1

About the author

Linda C. Weiss

Linda C. Weiss studied Biology at the Ruhr University Bochum. After receiving her Diploma degree in Neurobiology in 2007 under the supervision of Prof. Dr. K.P. Hoffmann, she started her doctoral degree in 2008 at the Department of Animal Ecology, Evolution and Biodiversity in the lab of Prof. Dr. R. Tollrian. After receiving her Ph.D. in 2011, she moved to the LMU Munich and Christian Laforsch for a guest scientist stay. She obtained a scholarship by the Deutsche Akademie der Naturforscher Leopoldina and joined Prof. Dr. John K. Colbourne’s Environmental Genomics group in Birmingham, UK, as a postdoctoral fellow. Since 2016, she works as a senior group leader at the Ruhr University Bochum. Here, she studies the molecular and neuronal mechanisms underlying phenotypic plasticity in aquatic animals.

Excursion 1: Phenotypic mismatches to environmental conditions

Light is one important factor that tunes the rhythmicity of specific behaviours (e.g. reproduction, migration, (in)activity) to diel, lunar, and seasonal cycles. With opsin and cryptochrome receptors located on special nerve cells, organisms can sense changes in the light (spectral/intensity) and photoperiodic regimes (daily, annual) controlling their chronobiology (Häfker and Tessmar-Raible, 2020). Urbanization-associated light pollution can disrupt this temporal niche use so that organisms are less well-adapted to their environment with consequences for their fitness. For example, the magnitude of circadian clock-controlled diel vertical migration in the freshwater crustacean Daphnia is reduced by nocturnal light (Häfker and Tessmar-Raible, 2020; Moore et al., 2000; Rund et al., 2016). Furthermore, seasonal coat-colour changes in mammals and birds of polar regions are controlled by physiological mechanisms entrained by photoperiod and optimized to match local conditions (Zimova et al., 2018). However, as seasonal duration and extent of snow cover decline through increasing global temperatures, species become colour-mismatched to their environment. In consequence, they lose the advantageous effect of seasonally tuned camouflage (Zimova et al., 2018).

Excursion 2: Pollutants disrupting sensory abilities

It is important to mention that there are also anthropogenic pollutants that can disrupt sensory systems, even at low, non-toxic concentrations (Troyer and Turner, 2015). Heavy metals are known to have toxicological effects on the mechanosensory lateral line system of fish. Being externally located, they are directly exposed to compounds in the surrounding environment and therefore prone to damage. In zebrafish (Danio rerio), for example, the level of damage to the neuromasts depends on the concentration of dissolved copper. Doses above 50 μg/L lead to an almost complete cell death (Kelley et al., 2018; McNeil et al., 2014). Subsequent studies with larval zebra fish have shown that exposure to both copper (CuSO4) and silver (AgNO3) metal salts is associated with a reduction in the number of neuromasts and a failure to orientate in a water current (Kelley et al., 2018; McNeil et al., 2014). Further stressors described include chemicals belonging to the group of antidepressants that enter aquatic systems through waste waters. These pharmaceuticals are designed to interfere with neuronal signalling cascades and thus have a foreseeable but often not described effects on species’ (neuro)-physiology, populations and community structures.

Excursion 3: Further examples of sensory systems prone to climate change

Elevated pCO2 effects have been tested on the capacity of visual detection in larval temperate gobies (Gobiusculus flavescens). The animals show an increase in phototactic activity, suggesting a visual hypersensitivity (Forsgren et al., 2013). Further, the flicker fusion threshold, a capacity important for movement tracking, was found to be reduced in spiny damselfish (Acanthochromis polyacanthus) (Chung et al., 2014). Elevated pCO2 can also directly change auditory sensitivity through an increased otolith size used by fish to detect sound waves (Bignami et al., 2013; Shen et al., 2016). Such a hypersensitivity may impair the ability to discriminate behaviourally relevant auditory cues from ‘background noise’.

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The author gratefully acknowledges the financial support from the Deutsche Forschungsgemeinschaft (WE6019/2-1).

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.


Baker, T.C., Ochieng, S.A., Cossé, A.A., Lee, S.G., Todd, J.L., Quero, C., and Vickers, N.J. (2004). A comparison of responses from olfactory receptor neurons of Heliothis subflexa and Heliothis virescens to components of their sex pheromone. J. Comp. Physiol. A Neuroethol. Sensory Neural Behav. Physiol. 190, 155–165, in Google Scholar

Bignami, S., Enochs, I.C., Manzello, D.P., Sponaugle, S., and Cowen, R.K. (2013). Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function. Proc. Natl. Acad. Sci. U. S. A. 110, 7366–7370, in Google Scholar

Boullis, A., Fassotte, B., Sarles, L., Lognay, G., Heuskin, S., Vanderplanck, M., Bartram, S., Haubruge, E., Francis, F., and Verheggen, F.J. (2017). Elevated carbon dioxide concentration reduces alarm signaling in aphids. J. Chem. Ecol. 43, 164–171, in Google Scholar

Bradshaw, A.D. (1965). Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13, 115–155, in Google Scholar

Chivers, D.P., Mccormick, M.I., Nilsson, G.E., Munday, P.L., Watson, S.A., Meekan, M.G., Mitchell, M.D., Corkill, K.C., and Ferrari, M.C.O. (2014). Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Global Change Biol. 20, 515–522, in Google Scholar PubMed

Chung, W.-S., Marshall, N.J., Watson, S.-A., Munday, P.L., and Nilsson, G.E. (2014). Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors. J. Exp. Biol. 217, 323–326, in Google Scholar PubMed

Clark, T.D., Raby, G.D., Roche, D.G., Binning, S.A., Speers-Roesch, B., Jutfelt, F., and Sundin, J. (2020). Ocean acidification does not impair the behaviour of coral reef fishes. Nature 577, 370–375, in Google Scholar PubMed

Clements, D.J., Sundin, J., Clark, T.D., and Jutfelt, F. (2020). An extreme decline effect in ocean acidification fish ecology. EcoEvoRxiv 0–24, in Google Scholar

DeWitt, T.J. and Scheiner, S.M. (2004). Phenotypic variation from single genotypes. Phenotypic Plasticity: Functional and Conceptual Approaches. T.J. DeWitt and S.M. Scheiner, eds. (New York: Oxford and New York: Oxford University Press), pp. 1–10.Search in Google Scholar

Doney, S.C., Fabry, V.J., Feely, R.A., and Kleypas, J.A. (2009). Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192, in Google Scholar PubMed

Draper, A.M. and Weissburg, M.J. (2019). Impacts of global warming and elevated CO2 on sensory behavior in predator-prey interactions: a review and synthesis. Front. Ecol. Evol. 7, 72, in Google Scholar

Ellis, R.P., Urbina, M.A., and Wilson, R.W. (2017). Lessons from two high CO2 worlds – future oceans and intensive aquaculture. Global Change Biol. 23, 2141–2148, in Google Scholar PubMed PubMed Central

Feng, Q. (2014). Temperature Sensing by Thermal TRP Channels. Thermodynamic Basis and Molecular Insights (Elsevier).10.1016/B978-0-12-800181-3.00002-6Search in Google Scholar PubMed

Ferrari, M.C.O., Wisenden, B.D., and Chivers, D.P. (2010). Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus. Can. J. Zool. 88, 698–724, in Google Scholar

Forsgren, E., Dupont, S., Jutfelt, F., and Amundsen, T. (2013). Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecol. Evol. 3, 3637–3646, in Google Scholar PubMed PubMed Central

Gomez-Diaz, C. and Benton, R. (2013). The joy of sex pheromones. EMBO Rep. 14, 874–883, in Google Scholar PubMed PubMed Central

Häfker, N.S. and Tessmar-Raible, K. (2020). Rhythms of behavior: are the times changin’? Curr. Opin. Neurobiol. 60, 55–66.10.1016/j.conb.2019.10.005Search in Google Scholar PubMed

Hasler, C.T., Butman, D., Jeffrey, J.D., and Suski, C.D. (2016). Freshwater biota and rising pCO2? Ecol. Lett. 19, 98–108, in Google Scholar PubMed

Hutson, M.R., Keyte, A.L., Hernández-Morales, M., Gibbs, E., Kupchinsky, Z.A., Argyridis, I., Erwin, K.N., Pegram, K., Kneifel, M., Rosenberg, P.B., et al.. (2017). Temperature-activated ion channels in neural crest cells confer maternal fever-associated birth defects. Sci. Signal. 10, eaal4055, in Google Scholar PubMed PubMed Central

Ishida, H., Isono, R.S., Kita, J., and Watanabe, Y.W. (2021). Long-term ocean acidification trends in coastal waters around Japan. Sci. Rep. 11, 1–7, in Google Scholar PubMed PubMed Central

Jessop, T.S., Lane, M., Wilson, R.S., and Narayan, E.J. (2018). Testing for short- and long-term thermal plasticity in corticosterone responses of an ectothermic vertebrate. Physiol. Biochem. Zool. 91, 967–975, in Google Scholar PubMed

Kalisch-Smith, J.I., Ved, N., and Sparrow, D.B. (2020). Environmental risk factors for congenital heart disease. Cold Spring Harb. Perspect. Biol. 12, a037234, in Google Scholar

Kelley, J.L., Chapuis, L., Davies, W.I.L., and Collin, S.P. (2018). Sensory system responses to human-induced environmental change. Front. Ecol. Evol. 6, 1–15, in Google Scholar

Kingsolver, J.G. (2009). The well-temperatured biologist. Am. Nat. 174, 755–768, in Google Scholar

Kirkpatrick, M. and Price, T. (2008). Sensory ecology: in sight of speciation. Nature 455, 601, in Google Scholar

Kowalewska, A.A., Krebs, N., Tollrian, R., and Weiss, L.C. (2020). Elevated pCO2 affects behavioural patterns and mechano-sensation in predatory phantom midge larvae Chaoborus obscuripes. Sci. Rep. 10, 1–9, in Google Scholar

Lecchini, D., Dixson, D.L., Lecellier, G., Roux, N., Frédérich, B., Besson, M., Tanaka, Y., Banaigs, B., and Nakamura, Y. (2017). Habitat selection by marine larvae in changing chemical environments. Mar. Pollut. Bull. 114, 210–217, in Google Scholar

Lin, S., Lin, Z., Ou, Y., Soim, A., Shrestha, S., Lu, Y., Sheridan, S., Luben, T.J., Fitzgerald, E., Bell, E., et al.. (2019). Maternal ambient heat exposure during early pregnancy in summer and spring and congenital heart defects – a large US population-based, case-control study. Physiol. Behav. 176, 139–148.10.1016/j.envint.2018.04.043Search in Google Scholar

Marking, L. and Meyer, F. (1985). Are better anaesthetics needed in fisheries? Fisheries 10, 2–5,<0002:abanif>;2.10.1577/1548-8446(1985)010<0002:ABANIF>2.0.CO;2Search in Google Scholar

Matthew, A. and Danielle, L. (2021). Assessing the impact of static and fluctuating ocean acidification on the behavior of Amphiprion percula. bioRxiv 1–36, in Google Scholar

McNeil, P.L., Boyle, D., Henry, T.B., Handy, R.D., and Sloman, K.A. (2014). Effects of metal nanoparticles on the lateral line system and behaviour in early life stages of zebrafish (Danio rerio). Aquat. Toxicol. 152, 318–323, in Google Scholar

Miner, B.E., de Meester, L., Pfrender, M.E., Lampert, W., and Hairston, N.G. (2012). Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proc. R. Soc. B Biol. Sci. 279, 1873–1882, in Google Scholar PubMed PubMed Central

Moore, M.V., Pierce, S.M., Walsh, H.M., Kvalvik, S.K., and Lim, J.D. (2000). Urban light pollution alters the diel vertical migration of Daphnia. SIL Proc. 1922–2010 27, 779–782, in Google Scholar

Munday, P.L., Dixson, D.L., Welch, M.J., Chivers, D.P., Domenici, P., Grosell, M., Heuer, R.M., Jones, G.P., McCormick, M.I., Meekan, M., et al.. (2020). Methods matter in repeating ocean acidification studies. Nature 586, E20–E24, in Google Scholar PubMed

Munday, P.L., McCormick, M.I., and Nilsson, G.E. (2012). Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future? J. Exp. Biol. 215, 3865–3873, in Google Scholar PubMed

Nilsson, G.E., Dixson, D.L., Domenici, P., McCormick, M.I., Sørensen, C., Watson, S.-A., and Munday, P.L. (2012). Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat. Clim. Change 2, 201–204, in Google Scholar

O’Donnell, S. (2018). The neurobiology of climate change. Sci. Nat. 105, 11, in Google Scholar PubMed

Pfennig, D.W., Wund, M.A., Snell-Rood, E.C., Cruickshank, T., Schlichting, C.D., and Moczek, A.P. (2010). Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol. Evol. 25, 459–467, in Google Scholar PubMed

Phillips, J.C., McKinley, G.A., Bennington, V., Bootsma, H.A., Pilcher, D.J., Sterner, R.W., and Urban, N.R. (2015). The potential for CO2-induced acidification in freshwater: a Great Lakes case study. Oceanography 28, 136–145, in Google Scholar

Pohnert, G., Steinke, M., and Tollrian, R. (2007). Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22, 198–204, in Google Scholar PubMed

Riveron, J., Boto, T., and Alcorta, E. (2013). Transcriptional basis of the acclimation to high environmental temperature at the olfactory receptor organs of Drosophila melanogaster. BMC Genom. 14, 259, in Google Scholar PubMed PubMed Central

Roggatz, C.C., Lorch, M., Hardege, J.D., and Benoit, D.M. (2016). Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules. Global Change Biol. 22, 3914–3926, in Google Scholar

Rund, S.S.C., Yoo, B., Alam, C., Green, T., Stephens, M.T., Zeng, E., George, G.F., Sheppard, A.D., Duffield, G.E., Milenković, T., et al.. (2016). Genome-wide profiling of 24 h diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation. BMC Genom. 17, 1–20, in Google Scholar

Ruszkiewicz, J.A., Tinkov, A.A., Skalny, A.V., Siokas, V., Dardiotis, E., Tsatsakis, A., Bowman, A.B., da Rocha, J.B.T., and Aschner, M. (2019). Brain diseases in changing climate. Environ. Res. 177, 108637, in Google Scholar

Shen, S.G., Chen, F., Schoppik, D.E., and Checkley, D.M. (2016). Otolith size and the vestibulo-ocular reflex of larvae of white seabass Atractoscion nobilis at high pCO2. Mar. Ecol. Prog. Ser. 553, 173–182, in Google Scholar

Stange, G. and Stowe, S. (1999). Carbon-dioxide sensing structures in terrestrial arthropods. Microsc. Res. Tech. 47, 416–427,<416::aid-jemt5>;2-x.10.1002/(SICI)1097-0029(19991215)47:6<416::AID-JEMT5>3.0.CO;2-XSearch in Google Scholar

Thor, P. and Dupont, S. (2015). Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Global Change Biol. 21, 2261–2271, in Google Scholar

Traynelis, S.F., Wollmuth, L.P., McBain, C.J., Menniti, F.S., Vance, K.M., Ogden, K.K., Hansen, K.B., Yuan, H., Myers, S.J., and Dingledine, R. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496, in Google Scholar

Tresguerres, M., Clifford, A.M., Harter, T.S., Roa, J.N., Thies, A.B., Yee, D.P., and Brauner, C.J. (2020). Evolutionary links between intra- and extracellular acid–base regulation in fish and other aquatic animals. J. Exp. Zool. Part A Ecol. Integr. Physiol. 333, 1–17, in Google Scholar

Tresguerres, M. and Hamilton, T.J. (2017). Acid–base physiology, neurobiology and behaviour in relation to CO2 -induced ocean acidification. J. Exp. Biol. 220, 2136–2148, in Google Scholar

Troyer, R.R. and Turner, A.M. (2015). Chemosensory perception of predators by larval amphibians depends on water quality. PLoS One 10, 1–10, in Google Scholar

Verschoor, A.M., Vos, M., and Van Der Stap, I. (2004). Inducible defences prevent strong population fluctuations in bi- and tritrophic food chains. Ecol. Lett. 7, 1143–1148, in Google Scholar

Weiss, L.C. and Tollrian, R. (2018). Predator induced defenses in Crustacea. The Natural History of Crustacea: Life Histories, Volume 5. Welborn, G. and Thiel, M., eds. (Oxford University Press: Oxford), pp. 303–321.10.1093/oso/9780190620271.003.0012Search in Google Scholar

Weiss, L.C., Albada, B., Becker, S.M., Meckelmann, S.W., Klein, J., Meyer, M., Schmitz, O.J., Sommer, U., Leo, M., Zagermann, J., et al.. (2018a). Identification of Chaoborus kairomone chemicals that induce defences in Daphnia. Nat. Chem. Biol. 14, 1133–1139, in Google Scholar PubMed

Weiss, L.C., Pötter, L., Steiger, A., Kruppert, S., Frost, U., and Tollrian, R. (2018b). Rising pCO2 in freshwater ecosystems has the potential to negatively affect predator-induced defenses in Daphnia. Curr. Biol. 28, 1–6, in Google Scholar PubMed

Weiss, L., Laforsch, C., and Tollrian, R. (2012). The taste of predation and the defences of prey. Chemical Ecology in Aquatic Systems. C. Brönmark and L.-A. Hannsson, eds. (Oxford University Press: UK), pp. 111–126.10.1093/acprof:osobl/9780199583096.003.0009Search in Google Scholar

West-Eberhard, M.J. (2005). Phenotypic accommodation: adaptive innovation due to developmental plasticity. J. Exp. Zool. B Mol. Dev. Evol. 304, 610–618, in Google Scholar PubMed

West-Eberhard, M.J. (2008). Phenotypic plasticity. Encycl. Ecol. Five-Volume Set 1, 2701–2707.10.1016/B978-008045405-4.00837-5Search in Google Scholar

Wisenden, B.D. (2000). Olfactory assessment of predation risk in the aquatic environment. Phil. Trans. Roy. Soc. Lond. B Biol. Sci. 355, 1205–1208, in Google Scholar PubMed PubMed Central

Wisenden, B.D. (2015). Chemical cues that indicate risk of predation. Fish Pheromones and Related Cues. Sorensen, P.W. and Wisenden, B.D., eds. (John Wiley & Sons, Inc.: Oxford), pp. 131–148.10.1002/9781118794739.ch6Search in Google Scholar

Wisenden, B.D., Vollbrecht, K.A., and Brown, J.L. (2004). Is there a fish alarm cue? Affirming evidence from a wild study. Anim. Behav. 67, 59–67, in Google Scholar

Zimova, M., Hackländer, K., Good, J.M., Melo-Ferreira, J., Alves, P.C., and Mills, L.S. (2018). Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them changing in a warming world? Biol. Rev. 93, 1478–1498, in Google Scholar PubMed

Published Online: 2021-12-20
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.12.2023 from
Scroll to top button