Abstract
The olfactory epithelium (OE) and its associated perireceptor space, i.e., the mucus layer (ML) covering the epithelium, are the most peripheral parts of the vertebrate olfactory system. The olfactory receptor neurons (ORNs), one of the cell types of the OE, are the odorant detectors of the olfactory system. These bipolar neurons extend their apical appendages, which express odorant receptors, into the ML. The binding of odorants to odorant receptors is the initial step of odor processing. The vast majority of research on the peripheral olfactory system has focused on the ORNs and the molecular components of the olfactory transduction cascades. Less attention has been directed to the other cell types of the OE and their physiological functions. For a long time, it was assumed that the olfactory signals detected in the OE are transmitted to the olfactory bulb without preprocessing, but this view turned out to be over-simplistic. It has been shown that the olfactory signals are critically modulated already in the OE. Despite compelling evidence, many descriptions of the olfactory system still ignore the existence of these peripheral modulatory mechanisms. The importance of peripheral modulation of the olfactory signals, the physiological functions of the other epithelial cell types, the extrinsic innervation of the olfactory mucosa, and the perireceptor space are only slowly coming into focus in the olfactory research. Furthermore, several intraepithelial signaling pathways that signal epithelial damage and initiate regenerative processes have recently been discovered. This review provides a concise overview of the current knowledge of peripheral events in the olfactory mucosa and the perireceptor space.
Zusammenfassung
Das olfaktorische Epithel und der zugehörige Perirezeptorraum, d. h. die Schleimschicht, die das Epithel bedeckt, sind die peripheren Teile des olfaktorischen Systems der Vertebraten. Die olfaktorischen Rezeptorneuronen, eine der Zellarten des olfaktorischen Epithels, sind die Geruchsdetektoren des olfaktorischen Systems. Diese bipolaren Neuronen erstrecken ihre apikalen Fortsätze, die Geruchsrezeptoren exprimieren, in die Schleimschicht. Die Bindung von Geruchsstoffen an Geruchsrezeptoren ist der erste Schritt der Geruchsverarbeitung. Der Großteil der Forschung über das periphere olfaktorische System hat sich auf die olfaktorischen Rezeptorneuronen und die molekularen Komponenten der olfaktorischen Transduktionskaskaden konzentriert. Den anderen Zelltypen des olfaktorischen Epithels und ihren physiologischen Funktionen wurde weit weniger Aufmerksamkeit geschenkt. Lange Zeit ging man davon aus, dass olfaktorische Signale, die im olfaktorischen Epithel erkannt werden, ohne Vorverarbeitung an den Bulbus olfactorius weitergeleitet werden, doch diese Ansicht erwies sich als zu vereinfacht. Es hat sich gezeigt, dass olfaktorische Signale bereits im Epithel entscheidend moduliert werden. Trotz überzeugender Beweise vernachlässigen viele Beschreibungen des olfaktorischen Systems immer noch die Existenz dieser peripheren Modulationsmechanismen. Erst sehr langsam rückt die Bedeutung der peripheren Modulation von olfaktorischen Signalen, die physiologischen Funktionen der anderen Zelltypen des olfaktorischen Epithels, die extrinsische Innervation der olfaktorischen Mukosa und der Perirezeptorraum in den Fokus der Riechforschung. Darüber hinaus wurden in den letzten Jahren mehrere intraepitheliale Signalwege entdeckt, die Epithelschäden signalisieren und Regenerationsprozesse einleiten. Dieser Übersichtsartikel gibt einen prägnanten Überblick über den aktuellen Wissensstand zu peripheren Ereignissen in der olfaktorischen Mukosa und dem Perirezeptorraum.
Funding source: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
Award Identifier / Grant number: 4113/4-1
About the author

Ivan Manzini is professor of Animal Physiology at the Justus-Liebig-University of Gießen, Germany. The research activities of his group primarily focus on developmental, molecular, cell biological, and behavioral aspects of the olfactory system of the African Clawed Frog, Xenopus laevis. He studied biology at the University of Modena and Reggio Emilia, Italy and received his PhD in Neuroscience from the University of Göttingen in 2003. He, then, conducted a postdoctoral research in the group of Prof. Dr. Dr. Detlev Schild (University of Göttingen, Germany). From 2010 to 2017, he led an independent research group at the DFG Research Center 103—Cluster of Excellence 171—Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) at the University of Göttingen, Göttingen, Germany.
Acknowledgment
I would like to thank Dr. Thomas Hassenklöver for reading the manuscript and providing a number of helpful comments.
-
Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by DFG Grant 4113/4-1.
-
Conflict of interest statement: The author declares no conflicts of interest regarding this article.
References
Ache, B.W. and Young, J.M. (2005). Olfaction: diverse species, conserved principles. Neuron 48, 417–430, https://doi.org/10.1016/j.neuron.2005.10.022.Search in Google Scholar
Asakawa, M., Fukutani, Y., Savangsuksa, A., Noguchi, K., Matsunami, H., and Yohda, M. (2017). Modification of the response of olfactory receptors to acetophenone by CYP1a2. Sci. Rep. 7, 10167, https://doi.org/10.1038/s41598-017-10862-5.Search in Google Scholar
Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.-C.C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G.H., et al.. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103, https://doi.org/10.1186/s40168-020-00875-0.Search in Google Scholar
Bouvet, J.F., Delaleu, J.C., and Holley, A. (1987). Olfactory receptor cell function is affected by trigeminal nerve activity. Neurosci. Lett. 77, 181–186, https://doi.org/10.1016/0304-3940(87)90583-0.Search in Google Scholar
Bouvet, J.F., Delaleu, J.C., and Holley, A. (1988). The activity of olfactory receptor cells is affected by acetylcholine and substance P. Neurosci. Res. 5, 214–223, https://doi.org/10.1016/0168-0102(88)90050-8.Search in Google Scholar
Brand, G. (2006). Olfactory/trigeminal interactions in nasal chemoreception. Neurosci. Biobehav. Rev. 30, 908–917, https://doi.org/10.1016/j.neubiorev.2006.01.002.Search in Google Scholar PubMed
Brann, J.H. and Firestein, S.J. (2014). A lifetime of neurogenesis in the olfactory system. Front. Neurosci. 8, 182, https://doi.org/10.3389/fnins.2014.00182.Search in Google Scholar PubMed PubMed Central
Breunig, E., Manzini, I., Piscitelli, F., Gutermann, B., di Marzo, V., Schild, D., and Czesnik, D. (2010). The endocannabinoid 2-arachidonoyl-glycerol controls odor sensitivity in larvae of Xenopus laevis. J. Neurosci. 30, 8965–8973, https://doi.org/10.1523/JNEUROSCI.4030-09.2010.Search in Google Scholar PubMed PubMed Central
Brunert, D., Kurtenbach, S., Isik, S., Benecke, H., Gisselmann, G., Schuhmann, W., Hatt, H., and Wetzel, C.H. (2009). Odorant-dependent generation of nitric oxide in mammalian olfactory sensory neurons. PLoS One 4, e5499, https://doi.org/10.1371/journal.pone.0005499.Search in Google Scholar PubMed PubMed Central
Bryche, B., Baly, C., and Meunier, N. (2021). Modulation of olfactory signal detection in the olfactory epithelium: focus on the internal and external environment, and the emerging role of the immune system. Cell Tissue Res. 384, 589–605, https://doi.org/10.1007/s00441-021-03467-y.Search in Google Scholar PubMed PubMed Central
Chuah, M.I. and West, A.K. (2002). Cellular and molecular biology of ensheathing cells. Microsc. Res. Tech. 58, 216–227, https://doi.org/10.1002/jemt.10151.Search in Google Scholar
Cuschieri, A. and Bannister, L. (1975). The development of the olfactory mucosa in the mouse: light microscopy. J. Anat. 119, 277–286.Search in Google Scholar
Czesnik, D., Schild, D., Kuduz, J., and Manzini, I. (2007). Cannabinoid action in the olfactory epithelium. Proc. Natl. Acad. Sci. USA 104, 2967–2972, https://doi.org/10.1073/pnas.0609067104.Search in Google Scholar
Daiber, P., Genovese, F., Schriever, V.A., Hummel, T., Möhrlen, F., and Frings, S. (2013). Neuropeptide receptors provide a signalling pathway for trigeminal modulation of olfactory transduction. Eur. J. Neurosci. 37, 572–582, https://doi.org/10.1111/ejn.12066.Search in Google Scholar
François, A., Grebert, D., Rhimi, M., Mariadassou, M., Naudon, L., Rabot, S., and Meunier, N. (2016). Olfactory epithelium changes in germfree mice. Sci. Rep. 6, 24687, https://doi.org/10.1038/srep24687.Search in Google Scholar
Getchell, M.L. and Getchell, T.V. (1992). Fine structural aspects of secretion and extrinsic innervation in the olfactory mucosa. Microsc. Res. Tech. 23, 111–127, https://doi.org/10.1002/jemt.1070230203.Search in Google Scholar
Getchell, M.L., Rafols, J.A., and Getchell, T.V. (1984a). Histological and histochemical studies of the secretory components of the salamander olfactory mucosa: effects of isoproterenol and olfactory nerve section. Anat. Rec. 208, 553–565, https://doi.org/10.1002/ar.1092080411.Search in Google Scholar
Getchell, M.L., Zielinski, B., and Getchell, T.V. (1988). Odorant and autonomic regulation of secretion in the olfactory mucosa. Molecular Neurobiology of the Olfactory System. F.L. Margolis and T.V. Getchell, eds. (Boston, MA: Springer US), pp. 71–98.10.1007/978-1-4613-0989-5_4Search in Google Scholar
Getchell, T.V., Margolis, F.L., and Getchell, M.L. (1984b). Perireceptor and receptor events in vertebrate olfaction. Prog. Neurobiol. 23, 317–345, https://doi.org/10.1016/0301-0082(84)90008-x.Search in Google Scholar
Gorojankina, T., Grébert, D., Salesse, R., Tanfin, Z., and Caillol, M. (2007). Study of orexins signal transduction pathways in rat olfactory mucosa and in olfactory sensory neurons-derived cell line Odora: multiple orexin signalling pathways. Regul. Pept. 141, 73–85, https://doi.org/10.1016/j.regpep.2006.12.012.Search in Google Scholar PubMed
Hall, R.A. (2011). Autonomic modulation of olfactory signaling. Sci. Signal. 4, pe1, https://doi.org/10.1126/scisignal.2001672.Search in Google Scholar PubMed
Hansen, A. and Finger, T.E. (2008). Is TrpM5 a reliable marker for chemosensory cells? Multiple types of microvillous cells in the main olfactory epithelium of mice. BMC Neurosci. 9, 115, https://doi.org/10.1186/1471-2202-9-115.Search in Google Scholar
Hassenklöver, T., Kurtanska, S., Bartoszek, I., Junek, S., Schild, D., and Manzini, I. (2008). Nucleotide-induced Ca2+ signaling in sustentacular supporting cells of the olfactory epithelium. Glia 56, 1614–1624, https://doi.org/10.1002/glia.20714.Search in Google Scholar
Hassenklöver, T., Schwartz, P., Schild, D., and Manzini, I. (2009). Purinergic signaling regulates cell proliferation of olfactory epithelium progenitors. Stem Cell. 27, 2022–2031, https://doi.org/10.1002/stem.126.Search in Google Scholar
Hedlund, B. and Shepherd, G.M. (1983). Biochemical studies on muscaranic receptors in the salamander olfactory epithelium. FEBS Lett. 162, 428–431, https://doi.org/10.1016/0014-5793(83)80801-1.Search in Google Scholar
Hegg, C.C. and Lucero, M.T. (2004). Dopamine reduces odor- and elevated-K+-induced calcium responses in mouse olfactory receptor neurons in situ. J. Neurophysiol. 91, 1492–1499, https://doi.org/10.1152/jn.00670.2003.Search in Google Scholar PubMed PubMed Central
Hegg, C.C., Greenwood, D., Huang, W., Han, P., and Lucero, M.T. (2003). Activation of purinergic receptor subtypes modulates odor sensitivity. J. Neurosci. 23, 8291–8301, https://doi.org/10.1523/JNEUROSCI.23-23-08291.2003.Search in Google Scholar
Heydel, J.-M., Holsztynska, E.J., Legendre, A., Thiebaud, N., Artur, Y., and Bon, A.-M. le (2010). UDP-glucuronosyltransferases (UGTs) in neuro-olfactory tissues: expression, regulation, and function. Drug Metabol. Rev. 42, 74–97, https://doi.org/10.3109/03602530903208363.Search in Google Scholar PubMed
Heydel, J.-M., Coelho, A., Thiebaud, N., Legendre, A., le Bon, A.-M., Faure, P., Neiers, F., Artur, Y., Golebiowski, J., and Briand, L. (2013). Odorant-binding proteins and xenobiotic metabolizing enzymes: implications in olfactory perireceptor events. Anat. Rec. 296, 1333–1345, https://doi.org/10.1002/ar.22735.Search in Google Scholar PubMed
Heydel, J.-M., Hanser, H.-I., Faure, P., and Neiers, F. (2016). Odorant metabolizing enzymes in the peripheral olfactory process. Flavour (Chichester, UK: John Wiley & Sons, Ltd), pp. 34–56.10.1002/9781118929384.ch2Search in Google Scholar
Heydel, J.-M., Faure, P., and Neiers, F. (2019). Nasal odorant metabolism: enzymes, activity and function in olfaction. Drug Metab. Rev. 51, 224–245, https://doi.org/10.1080/03602532.2019.1632890.Search in Google Scholar PubMed
Hutch, C.R., Hillard, C.J., Jia, C., and Hegg, C.C. (2015). An endocannabinoid system is present in the mouse olfactory epithelium but does not modulate olfaction. Neuroscience 300, 539–553, https://doi.org/10.1016/j.neuroscience.2015.05.056.Search in Google Scholar PubMed PubMed Central
Jiang, Y., Li, Y.R., Tian, H., Ma, M., and Matsunami, H. (2015). Muscarinic acetylcholine receptor M3 modulates odorant receptor activity via inhibition of β-arrestin-2 recruitment. Nat. Commun. 6, 6448, https://doi.org/10.1038/ncomms7448.Search in Google Scholar PubMed PubMed Central
Kawai, F., Kurahashi, T., and Kaneko, A. (1999). Adrenaline enhances odorant contrast by modulating signal encoding in olfactory receptor cells. Nat. Neurosci. 2, 133–138, https://doi.org/10.1038/5686.Search in Google Scholar PubMed
Koskinen, K., Reichert, J.L., Hoier, S., Schachenreiter, J., Duller, S., Moissl-Eichinger, C., and Schöpf, V. (2018). The nasal microbiome mirrors and potentially shapes olfactory function. Sci. Rep. 8, 1296, https://doi.org/10.1038/s41598-018-19438-3.Search in Google Scholar PubMed PubMed Central
Kumpitsch, C., Koskinen, K., Schöpf, V., and Moissl-Eichinger, C. (2019). The microbiome of the upper respiratory tract in health and disease. BMC Biol. 17, 87, https://doi.org/10.1186/s12915-019-0703-z.Search in Google Scholar PubMed PubMed Central
Lacroix, M.-C., Badonnel, K., Meunier, N., Tan, F., Poupon, C.S.-L., Durieux, D., Monnerie, R., Baly, C., Congar, P., Salesse, R., et al.. (2008). Expression of insulin system in the olfactory epithelium: first approaches to its role and regulation. J. Neuroendocrinol. 20, 1176–1190, https://doi.org/10.1111/j.1365-2826.2008.01777.x.Search in Google Scholar PubMed
Li, Y.R. and Matsunami, H. (2011). Activation state of the M3 muscarinic acetylcholine receptor modulates mammalian odorant receptor signaling. Sci. Signal. 4, ra1, https://doi.org/10.1126/scisignal.2001230.Search in Google Scholar PubMed PubMed Central
Loch, D., Heidel, C., Breer, H., and Strotmann, J. (2013). Adiponectin enhances the responsiveness of the olfactory system. PLoS One 8, e75716, https://doi.org/10.1371/journal.pone.0075716.Search in Google Scholar PubMed PubMed Central
Loch, D., Breer, H., and Strotmann, J. (2015). Endocrine modulation of olfactory responsiveness: effects of the orexigenic hormone ghrelin. Chem. Senses 40, 469–479, https://doi.org/10.1093/chemse/bjv028.Search in Google Scholar PubMed
Lucero, M.T. (2013). Peripheral modulation of smell: fact or fiction? Semin. Cell Dev. Biol. 24, 58–70, https://doi.org/10.1016/j.semcdb.2012.09.001.Search in Google Scholar PubMed PubMed Central
Manzini, I., Schild, D., and di Natale, C. (2022). Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol. Rev. 102, 61–154, doi:https://doi.org/10.1152/PHYSREV.00036.2020.Search in Google Scholar PubMed
Mashukova, A., Spehr, M., Hatt, H., and Neuhaus, E.M. (2006). Beta-arrestin2-mediated internalization of mammalian odorant receptors. J. Neurosci. 26, 9902–9912, https://doi.org/10.1523/JNEUROSCI.2897-06.2006.Search in Google Scholar PubMed PubMed Central
Menco, B.P. (1980). Qualitative and quantitative freeze-fracture studies on olfactory and nasal respiratory epithelial surfaces of frog, ox, rat, and dog. II. Cell apices, cilia, and microvilli. Cell Tissue Res. 211, 5–29, https://doi.org/10.1007/BF00233719.Search in Google Scholar PubMed
Menco, B.P.M. (1983). The ultrastructure of olfactory and nasal respiratory epithelium surfaces. Nasal Tumors in Animals and Man: Volume I: Anatomy, Physiology, and Epidemiology (CRC Press, Inc.: Boca Raton, Florida), pp. 45–102.Search in Google Scholar
Millery, J., Briand, L., Bézirard, V., Blon, F., Fenech, C., Richard-Parpaillon, L., Quennedey, B., Pernollet, J.-C., and Gascuel, J. (2005). Specific expression of olfactory binding protein in the aerial olfactory cavity of adult and developing Xenopus. Eur. J. Neurosci. 22, 1389–1399, https://doi.org/10.1111/j.1460-9568.2005.04337.x.Search in Google Scholar PubMed
Minn, A., Leclerc, S., Heydel, J.-M., Minn, A.-L., Denizot, C., Cattarelli, M., Netter, P., and Gradinaru, D. (2002). Drug transport into the mammalian brain: the nasal pathway and its specific metabolic barrier. J. Drug Target. 10, 285–296, https://doi.org/10.1080/713714452.Search in Google Scholar PubMed
Miyawaki, A., Matsushita, F., Ryo, Y., and Mikoshiba, K. (1994). Possible pheromone-carrier function of two lipocalin proteins in the vomeronasal organ. EMBO J. 13, 5835–5842, https://doi.org/10.1002/j.1460-2075.1994.tb06927.x.Search in Google Scholar PubMed PubMed Central
Mousley, A., Polese, G., Marks, N.J., and Eisthen, H.L. (2006). Terminal nerve-derived neuropeptide y modulates physiological responses in the olfactory epithelium of hungry axolotls (Ambystoma mexicanum). J. Neurosci. 26, 7707–7717, https://doi.org/10.1523/JNEUROSCI.1977-06.2006.Search in Google Scholar PubMed PubMed Central
Nagashima, A. and Touhara, K. (2010). Enzymatic conversion of odorants in nasal mucus affects olfactory glomerular activation patterns and odor perception. J. Neurosci. 30, 16391–16398, https://doi.org/10.1523/JNEUROSCI.2527-10.2010.Search in Google Scholar PubMed PubMed Central
Naudon, L., François, A., Mariadassou, M., Monnoye, M., Philippe, C., Bruneau, A., Dussauze, M., Rué, O., Rabot, S., and Meunier, N. (2020). First step of odorant detection in the olfactory epithelium and olfactory preferences differ according to the microbiota profile in mice. Behav. Brain Res. 384, 112549, https://doi.org/10.1016/j.bbr.2020.112549.Search in Google Scholar PubMed
Negroni, J., Meunier, N., Monnerie, R., Salesse, R., Baly, C., Caillol, M., and Congar, P. (2012). Neuropeptide Y enhances olfactory mucosa responses to odorant in hungry rats. PLoS One 7, e45266, https://doi.org/10.1371/journal.pone.0045266.Search in Google Scholar PubMed PubMed Central
Ni, M.-M., Luo, Y., Liu, J., Liao, D.-Q., and Tang, Y.-D. (2008). FMRFamide modulates outward potassium currents in mouse olfactory sensory neurons. Clin. Exp. Pharmacol. Physiol. 35, 563–567, https://doi.org/10.1111/j.1440-1681.2007.04840.x.Search in Google Scholar
Oka, Y., Katada, S., Omura, M., Suwa, M., Yoshihara, Y., and Touhara, K. (2006). Odorant receptor map in the mouse olfactory bulb: in vivo sensitivity and specificity of receptor-defined glomeruli. Neuron 52, 857–869, https://doi.org/10.1016/j.neuron.2006.10.019.Search in Google Scholar
Palouzier-Paulignan, B., Lacroix, M.-C., Aime, P., Baly, C., Caillol, M., Congar, P., Julliard, A.K., Tucker, K., and Fadool, D.A. (2012). Olfaction under metabolic influences. Chem. Senses 37, 769–797, https://doi.org/10.1093/chemse/bjs059.Search in Google Scholar
Park, D. and Eisthen, H.L. (2003). Gonadotropin releasing hormone (GnRH) modulates odorant responses in the peripheral olfactory system of axolotls. J. Neurophysiol. 90, 731–738, https://doi.org/10.1152/jn.01162.2002.Search in Google Scholar
Park, D., Zawacki, S., and Eisthen, H. (2003). Olfactory signal modulation by Molluscan cardioexcitatory tetrapeptide (FMRFamide) in axolotls (Ambystoma mexicanum). Chem. Senses 28, 339–348, https://doi.org/10.1093/chemse/28.4.339.Search in Google Scholar
Pelosi, P. and Knoll, W. (2022). Odorant-binding proteins of mammals. Biol. Rev. 97, 20–44, https://doi.org/10.1111/brv.12787.Search in Google Scholar
Pevsner, J., Hou, V., Snowman, A., and Snyder, S. (1990). Odorant-binding protein. Characterization of ligand binding. J. Biol. Chem. 265, 6118–6125.10.1016/S0021-9258(19)39300-7Search in Google Scholar
Rotermund, N., Schulz, K., Hirnet, D., and Lohr, C. (2019). Purinergic signaling in the vertebrate olfactory system. Front. Cell. Neurosci. 13, 112, https://doi.org/10.3389/fncel.2019.00112.Search in Google Scholar PubMed PubMed Central
Savigner, A., Duchamp-Viret, P., Grosmaitre, X., Chaput, M., Garcia, S., Ma, M., and Palouzier-Paulignan, B. (2009). Modulation of spontaneous and odorant-evoked activity of rat olfactory sensory neurons by two anorectic peptides, insulin and leptin. J. Neurophysiol. 101, 2898–2906, https://doi.org/10.1152/jn.91169.2008.Search in Google Scholar PubMed PubMed Central
Schilling, B. (2017). Perireceptor processes in the nose - biochemical events beyond olfactory receptor activation. Handbook of Odors. Buettner, A., ed. (Springer: Heidelberg), pp. 605–616.Search in Google Scholar
Silver, W.L. and Finger, T.E. (2009). The anatomical and electrophysiological basis of peripheral nasal trigeminal chemoreception. Ann. N. Y. Acad. Sci. 1170, 202–205, https://doi.org/10.1111/j.1749-6632.2009.03894.x.Search in Google Scholar PubMed
Thiebaud, N., Veloso Da Silva, S., Jakob, I., Sicard, G., Chevalier, J., Ménétrier, F., Berdeaux, O., Artur, Y., Heydel, J.-M., and le Bon, A.-M. (2013). Odorant metabolism catalyzed by olfactory mucosal enzymes influences peripheral olfactory responses in rats. PLoS One 8, e59547, https://doi.org/10.1371/journal.pone.0059547.Search in Google Scholar PubMed PubMed Central
Tong, J., Mannea, E., Aimé, P., Pfluger, P.T., Yi, C.-X., Castaneda, T.R., Davis, H.W., Ren, X., Pixley, S., Benoit, S., et al.. (2011). Ghrelin enhances olfactory sensitivity and exploratory sniffing in rodents and humans. J. Neurosci. 31, 5841–5846, https://doi.org/10.1523/JNEUROSCI.5680-10.2011.Search in Google Scholar PubMed PubMed Central
Wachowiak, M. (2011). All in a sniff: olfaction as a model for active sensing. Neuron 71, 962–973, https://doi.org/10.1016/j.neuron.2011.08.030.Search in Google Scholar PubMed PubMed Central
Weiss, L., Manzini, I., and Hassenklöver, T. (2021). Olfaction across the water–air interface in anuran amphibians. Cell Tissue Res. 383, 301–325, https://doi.org/10.1007/s00441-020-03377-5.Search in Google Scholar PubMed PubMed Central
Yoshikawa, K., Wang, H., Jaen, C., Haneoka, M., Saito, N., Nakamura, J., Adappa, N.D., Cohen, N.A., and Dalton, P. (2018). The human olfactory cleft mucus proteome and its age-related changes. Sci. Rep. 8, 17170, https://doi.org/10.1038/s41598-018-35102-2.Search in Google Scholar PubMed PubMed Central
Zhang, W. and Delay, R.J. (2007). Gonadotropin-releasing hormone modulates voltage-activated sodium current and odor responses in Necturus maculosus olfactory sensory neurons. J. Neurosci. Res. 85, 1656–1667, https://doi.org/10.1002/jnr.21297.Search in Google Scholar PubMed
© 2022 Walter de Gruyter GmbH, Berlin/Boston