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Abstract: The DYNAMAP project aims at obtaining a dy-
namic noisemap of a large residential area such as the City
of Milan (Italy), by recording traffic noise from a limited
number of noise sensors. To this end,we performa statisti-
cal analysis of road stretches and group them into different
clusters showing a similar measured hourly traffic noise
behavior. In the sameway,we group simulated hourly traf-
fic flow rates and compare their compositionswith those of
the traffic noise groups. The best agreement with the traf-
fic noise was found by using the so-called normal traffic
flow rate, yielding overlaps between 68 and 97%. Finally,
we derive a simple analytical model to predict the hourly
traffic noise from the simulated normal traffic flow, in very
good agreement with the measured values.

1 Introduction
The Environmental Noise Directive (END) requires regular
updating of noisemaps to be implemented every five years
to check and report to the regulator about the changes oc-
curred during the reference period in the urban area [1].
This updating process is usually achieved using a stan-
dardized approach, consisting in collating and processing
information through acoustic models to produce the up-
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dated maps [2, 3]. This procedure is time consuming and
costly. To make the updating of noise maps easier and
more cost effective, there is a need of integrated systems
that incorporate real-time measurements and processing
to assess the acoustic impact of noise sources. To this end,
a dedicated project, named DYNAMAP, has been proposed
and co-financed in the framework of the LIFE 2013 pro-
gram, to develop a dynamic approach of noise mapping,
being able to update environmental noise levels through a
direct linkwith a limited number of permanent noisemon-
itoring terminals.

The DYNAMAP project has the aim to group road net-
work stretches in homogeneous clusters representing a
possible method to reduce the size of the monitoring ter-
minals network. Roads sharing the same characteristics
for some parameters such as vehicles’ flow rate capacity,
number of lanes, etc., are grouped together. Such param-
eters are usually included in the functional classification
of roads and linked to the role played in the urban mobil-
ity. However, this classification generally does not reflect
the actual use of roads and, therefore, the actual noise
emission. For a better description of the real behavior of
noise in complex scenarios such as the road network of the
city of Milan, we approach the problem considering an ag-
gregation method based upon similarities among the 24-h
continuous acoustic monitoring of the hourly equivalent
noise levels, LAeqh. For this purpose, we put together his-
torical noise monitoring campaigns carried out in Milan
in the recent past, supplemented by additional measure-
ments. The measurements we are dealing with here refer
to 24-h continuous data from 58 monitoring stations, ho-
mogeneously distributed over the entire urban zone. Once
normalized, such trend profiles provide a tool to group to-
gether roads according to their vehicular dynamics, and
therefore allowing for a more real description of such road
networks.

In this work, we study in detail the question of predict-
ing trafficnoise fromcalculatedvalues ofmeanhourly traf-
fic flow rate. Although this problem has been addressed
several times in the literature [4–10], our discussion ex-
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tends those results to hourly noise and traffic flow rate pat-
terns. We implement two different models for dealing with
the traffic flow rate, and compare the results with mea-
sured noise patterns. Specifically, we study both the mea-
sured noise and the simulated traffic flow rate clusters,
their correlations and road stretches compositions. Sec-
ondly, starting from the traffic flow rates we aim at predict-
ing the hourly behavior of the noise stretches of the whole
urban map. This prediction is based entirely on the traf-
fic flow rate information, and its validity is checked on the
available noisemeasurements. To be noted is that here the
measurements of traffic noise were performed only tem-
porarily (oneday). Eventual anomalousnoise sources (am-
bulances, roadmaintenance perturbations, general noises
of anthropomorphic origin, etc.) have been removed from
the raw data by analyzing the corresponding frequency
spectra. Therefore, the results obtained here are relevant
and representative for the present purposes. The influence
of possible seasonal effects is the subject of a future study.
Thepresent results constitute the basis for determining the
choice of a non-acoustic parameter to be used within the
DYNAMAP project, which is intended to be based on the
recording of the traffic noise data continuously over a lim-
ited set of monitoring stations, thus taking any seasonal
variations into account implicitly.

The paper is organized as follows. First, in Sect. 2, we
review works related to our paper. In Sect. 3, we deal with
the clustering of both noise and flow rate data, followed by
adiscussion of the behavior of different types of trafficflow
rates. In Sect. 4, we introduce two types of fittingmodels of
hourly road noise as a function of the corresponding flow
rate. We present two typical results for the two types of fit-
ting functions used. We conclude the section by showing
the predictions of noise using mean values of the model
parameters for each cluster considered. Finally, our con-
clusions are reported in Sect. 5.

2 Related Works
Road traffic is themain source of noise in residential areas
and its assessment and management is, therefore, strictly
linked to such issues. For this reason, monitoring traffic
and noise in urban areas has been the object ofmany stud-
ies, and their results have been used to build up noise
maps to determine the population exposure to environ-
mental noise. In the following, we summarize some of the
results which are related to the present work, and provide
us with a ‘state-of-the-art’ in the field.

In Ref. [4], a review of 20 past survey procedures
shows that the surveys can be categorized into four
types: random sampling, sampling by land-use cat-
egory, receptor-oriented sampling and source-oriented
sampling. Various weaknesses in the different types are
examined and it is suggested that several survey types
and various survey objectives are incompatible. Receptor-
oriented surveys would appear to offer the best opportu-
nity for gathering noise level data which can be gener-
alized from site-specific information to the exposure of a
population. Disaggregation of noise by source type dur-
ing a measurement program could make the collection of
noise data in urban noise surveys more efficient.

In Ref. [5], it is shown that environmental noise levels
can vary over a wide range of values as a result of the di-
versity in the site conditions and different activities which
necessarily occur during the time field measurements are
carried out. This variability often yields a lack of consen-
sus about how to estimate and present it when applying
standards and regulations. In order to estimate the statisti-
cal variability, a largemeasurement database has been ac-
quired under field conditions, consisting of noise record-
ings over two weeks, at 50 separate locations in residen-
tial areas which mainly affected by road traffic noise. The
authors show that increased variability occur at the lower
values of both logarithmic and arithmetic means of LAeq.
It is concluded that the observed relationships may be of
help when estimating the noise level variability and the
uncertainty associated with a noise measurement affected
by road traffic or other environmental noise sources.

In Ref. [6], the authors explore the temporal and spa-
tial variability of traffic noise in the City of Toronto. They
collected real-time measurements of traffic noise at 554
locations across Toronto between June 2012 and January
2013. At each site, the measurements extended for a pe-
riod of 30 min during daytime, and further measurements
were made at 62 locations randomly selected from the first
set of places, which exhibited high correlation (Pearson’s
correlation coefficient (r): 0.79). In addition, continuous
measurements of noise were recorded for seven days at
ten sites. It was observed that noise variability was pre-
dominantly spatial innature, rather than temporal: spatial
variability accounted for 60% of the total observed varia-
tions in trafficnoise. Trafficvolume, length of arterial road,
and industrial area were the three most important vari-
ables explaining the majority of the spatial variability of
noise (R2 = 0.68 to 0.74). It is found that 80% of the sam-
pled locations exceeded the guideline (i.e. 55 dBA, 16 h)
of the Ministry of the Environment of the Province of On-
tario. These findings suggested ubiquitous traffic noise ex-
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posure across Toronto and that noise variability was ex-
plained mostly by spatial characteristics.

In Ref. [7], an overview of epidemiological studies is
presented in the field of community noise and cardio-
vascular risk. Risk estimates are derived from individual
studies and given for 5 dB(A) categories of the average A-
weighted sound pressure level during the day. The noise
sources considered in the studies are road and aircraft
noise, while the health parameters considered are mean
blood pressure, hypertension and ischaemic heart dis-
ease, including myocardial infarction, both from children
and adults. Interestingly, the authors show evidence that
correlations between transportation noise and cardiovas-
cular risk have increased since the previous review pub-
lished in Noise and Health in the year 2000.

In Ref. [8], authors discuss efficient decision-making
in noise control actions, and classify a given location in
a sensitive area according to the different prevailing traf-
fic conditions. The paper outlines an expert system aimed
to help urban planners to classify urban locations based
on their trafficcomposition. Severalmachine learning type
of algorithms are used based on multi-layer Perceptron
and support vector machines with sequential minimal op-
timization. A combination of environmental variables are
used as input variables. The procedure was tested on a
full database collected from the city of Granada (Spain),
including urban locations with road-traffic as dominant
noise source. Among all the possibilities tested, support
vector machines based models achieves the better re-
sults in classifying the considered urban locations into the
four categories observed, with average values of weighted
F-measure and Kappa statistics up to 0.9 and 0.8, re-
spectively. Regarding the feature selection techniques, at-
tribute evaluation algorithms (such as ReliefF andmRMR)
achieve better classification results than subset evaluation
algorithms in reducing the model complexity, and so rele-
vant environmental variables are chosen for the proposed
procedure. Results show that these tools can be used for
addressing a prompt assessment of potential road-traffic-
noise related problems, as well as for gathering informa-
tion in order to takemore well-founded actions against ur-
ban road-traffic noise.

In Ref. [9], the authors show that categorization is
a powerful method for describing urban sound environ-
ments. The procedure is based on mobile measurements,
followed by a statistical clustering analysis selecting rele-
vantnoise indicators for abetter classificationof sounden-
vironments. Analysis consists of a 3 days + 1 night survey
where geo-referenced noise measurements were collected
over 19 1-h sound-walk periods in a district of Marseille,
France. The clustering analysis shows that a limited subset

of indicators is sufficient to discriminate sound environ-
ments. Three indicators emerge from the clustering, that
is, the LAeq, the standard deviation σLAeq, and the sound
gravity spectrum SGC [50 Hz–10 kHz], are consistent with
previous studies on sound environment classification. In-
terestingly, the procedure enables the description of the
sound environment, which can be classified into homoge-
nous sound environment classes by means of the selected
indicators. The procedure can be adapted to any urban en-
vironment, and can, for example, favorably enhance per-
ceptive studies by delimiting precisely the spatial extent of
each typical sound environment.

In Ref. [10], the authors present an analysis of ur-
ban traffic within the H.U.S.H. (Harmonization of Ur-
ban Noise reduction Strategies for Homogeneous action
plans), a project co-funded by European Community’s
Life+Program and it focuses on the harmonization of na-
tional and European legislations, regarding noise man-
agement tools. The paper is concerned with different ve-
hicular traffic scenarios. Tools regarding design and traf-
fic management are used for analysis and evaluation, as
well as a computational model for trafficmanagement val-
idated with measured data. The results of simulations car-
ried out on traffic flows, related to the different scenarios
considered, have been used as input data for the acoustic
model, leading to the definition of relationships existing
between changing traffic flows and the reducing environ-
mental noise.

3 Clustering
In our analysis we consider the hourly equivalent level
LAeqh [dB] which has been measured in 58 sites in the city
of Milan over one entire day and corresponding to 8 func-
tional road classifications (from A to F and sub-groups),
according to the official Italian classification of roads. For
simplicity, we have not distinguished between sub-groups
and have just considered the main four classes of interest
(A, D, E, F). Data were recorded on weekdays and in ab-
sence of rain as prescribed by the current Italian legisla-
tion [11]. Due to the different monitoring conditions, such
as different distances from the road and also to the con-
dition of the street itself (e.g. its geometry, the presence
of reflecting surfaces and obstacles along sound propaga-
tion and types of paving, etc.), we need to normalize the
recorded data for each site appropriately. We define the
normalized equivalent noise level, δij, according to:
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Table 1: Composition of clusters for different number of groups compared to the road functional classes. The composition is represented in
the following way. From the total roads considered (58), there are 3 from Class A, 9 from D, 19 from E and 27 from F. Within each class, roads
belong either to Cluster 1 or to Cluster 2. For instance, Class A (3) has roads only on Cluster 1, Class D (9) has 7 roads on Cluster 1 and 2 on
Cluster 2. The total composition in our data-base made of 58 measurements has 62% or roads on Cluster 1 and 38% on Cluster 2.

Cluster Road Class (functional classification) TotalA D E F
1 3 (100%) 7 (78%) 16 (84%) 10 (37%) 36 (62%)
2 0 (0%) 2 (22%) 3 (16%) 17 (63%) 22 (38%)

δij = LAeqhj/LAeqMaxj (i = 1, . . . . . . . . . , 24 h; (1)
j = 1, . . . . . . . . . , 58)

where the index ith refers to the hour of the day and jth to
the corresponding site. Here,wehave taken the normaliza-
tion factor LAeqMaxj [dB] corresponding to the peak (maxi-
mum) noise value within the hourly series.

The traffic flow rate, F (number of vehicles per hour),
for each street is taken from a standard and well tested
model. The traffic datawere provided by theAMAT agency,
in charge of the traffic mobility management of the city
of Milan [12]. The simulation model of the road network
is defined as a “macro-scale traffic static allocation equi-
libriummodel”. The origin/destination matrix is based on
the search for the path that minimizes the “generalized
cost” between each zone pair. The parameters defining
such “cost” rely on the travel time, the kilometric cost and
eventually the toll charge. The time is converted into mon-
etary value through a parameter denoted as “time value”,
which depends on the user category considered. The as-
signing model is of multi-class type, that is three differ-
ent matrices are defined corresponding to cars, commer-
cial vehicles and motorbikes, in order to take into account
the different user behaviors. Such origin/destination ma-
trices for each category have been obtained through ded-
icated mobility survey on the entire city of Milan, and its
outskirts.

If one disregards the type of vehicle, we obtain what is
called the normal flow rate, denoted as Fn. By considering
the fact that large vehicles, like trucks for instance, have
a larger contribution to traffic noise, one can also define
the so called equivalent flow rate, Feq, which weights dif-
ferently the vehicle type (see below). Similarly, as for the
noise, we normalize the traffic flow rate according to its
peak value, FnMax, as follows,

λij = Fnij/FnMaxj (i = 1, . . . . . . . . . , 24 h; (2)
j = 1, . . . . . . . . . , 58)

and similarly, FeqMax for the equivalent flow rate.
Unsupervised clustering algorithms are employed to

separate normalized noise levels into groups which be-

have similarly. Several algorithms (hierarchical agglomer-
ation [13], K-means algorithm [14], andpartitioningaround
medoids (PAM) [15]) are considered. In general, we choose
the number of clusters in such a way as to obtain a reason-
able compromise between satisfactory discrimination be-
tween the elements, and the need to keep the number of
groups to a minimum. We employ the Euclidean distance
as the underlying structural metric.

We use the statistical software R [16] for computing
and analysing the data. The validation of the results is
performed using the package “clValid” [17]. The cluster-
ing results are ranked using an index based on both the
performance and the validation measures for each algo-
rithm [18]. In this way, the optimal list is obtained yielding
a two-cluster hierarchical agglomeration at the first place,
followed also by a two-cluster groups by the K-means and
PAMmethods.

The obtained noise clusters are composed of roads be-
longing to different classes, as reported in Table 1. For the
four-cluster solution (not shown here), which is commen-
surate with the number of road functional classification, a
poor match is found. The F class is found over all the four
clusters, whereas the remaining classes are distributed in
the first two groups. This confirms that the road traffic is
primarily linked to the effective urbanmobility rather than
its functional classification.

Regarding the clustering process results, the two-
cluster solution represents, therefore, a satisfying balance
between an adequate differentiation among time patterns
and the need to get a simple practical solution. The two
clusters appeared to be formed primarily by the contribu-
tions from different temporal profiles belonging to roads
of class A, D and E for cluster 1 (made up of 36 temporal
profiles corresponding to a 62%) and of roads of class F for
cluster 2 (made up of 22 temporal profiles corresponding
to a 38%). This result confirms that the noise time patterns
are not directly linked to the standard road classification.
The same procedure is applied to cluster the traffic flow
rate.

Figure 1 shows the results of hierarchical clustering
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Figure 1: Statistical analysis of measured hourly traflc noise. (Left panel) Clustering results from MDS, where the two clusters are marked
in different colors. Cluster 1 has 33 elements (hereafter denoted also as Large cluster, L) and Cluster 2 has 25 elements (Small cluster, S).
(Right panel) Average values of traflc noise, δik (k = 1, 2), as a function of the intraday hours, i, for each cluster. The standard deviation
band (1σ) is included for convenience.

Figure 2: Statistical analysis of simulated hourly traflc flow rate. (Left panel) Clustering results from MDS, where the two clusters are
marked in different colors. Large cluster with 42 elements (blue color), and Small cluster with 16 elements (red color). (Right panel) Average
values of traflc flow rate, λik, as a function of the intraday hours, i, for each cluster, k = 1, 2. The standard deviation band (1σ) is included
for convenience.

of noise data, for the 58 site measurements. In Fig. 1 (left
panel), we show the scatter plot obtained from the Multi-
Dimensional Scaling (MDS) results, providing a visual rep-
resentation of the pattern of proximities among the data.
MDS takes a set of dissimilarities and returns a set of points
such that the distances between the points are approxi-
mately equal to the dissimilarities, in other words it dis-

plays the structure of (complex) distance-like data (a dis-
similarity matrix) from a high dimensional space into a
lower dimensional space without too much loss of infor-
mation. The goal ofMDS is to faithfully represent these dis-
tances within the lowest possible dimensional space [19].
The two coordinates shown in Figs 1 and 2, represent the
best lower-dimensional space obtained from the MDS al-
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Table 2: Comparison between the percentage number of elements in common for each cluster obtained from both the noise and traflc flow
rates, by taking the noise clusters as reference. The best agreement is obtained for the normal flow rate, in which the large cluster has
NL = 42 elements, while the small one has NS = 16 elements. This to be compared with the numbers NL = 33 and NS = 25 for the noise
clusters, respectively.

Noise S Noise L Noise S Noise L
Normal Flow rate L 32 97 Equivalent Flow rate L 41 89
Normal Flow rate S 68 3 Equivalent Flow rate S 59 14

Log Norm. Flow rate L 55 97 Log Equiv. Flow rate L 55 97
Log Norm. Flow rate S 45 3 Log Equiv. Flow rate S 45 3

gorithm, where each point corresponds to a single road
stretch including thewhole hourly values of noise and traf-
ficflow rate. InFig. 1 (right panel), the correspondingmean
values δik are reported for each cluster (Eq. 1), together
with the hourly standard deviations. Figure 2 shows the
corresponding results for the clustering and mean cluster
values, λik with (k = 1, 2), of the hourly traffic flow rate
(Eq. 2).

By considering the results shown in Figs. 1 and 2, one
can see that noise variations are limited to a rather narrow
band, between 1 and 0.75, while traffic flow rate changes
from 1 to near 0. The fact that noise does not decrease dur-
ing night hours asmuch as the flow rate does, is due essen-
tially to two facts: Locally, noise from neighboring streets
have a non-vanishing contribution; and, secondly, vanish-
ing trafficflowrates are actually a result of the trafficmodel
employed, which has been designed to describe more ac-
curately high traffic situations. This conditionmight not be
fulfilled during night hours in secondary streets. Despite
these particular differences, the global hourly behavior of
both quantities is still quite strongly correlated. The differ-
ent widths of the two bands, for noise and flow rate, can
be taken into account by the linear fits we discuss later in
Sect. 4.

The strong correlation between noise and flow rate is
quite well documented in the literature (see e.g. [20]), and
we will present further results supporting this view within
the present context. We consider next the issue of compar-
ing the cluster composition of both noise and flow rate, as
obtained by using different definitions of the latter such
as: The normal flow rate (as defined above), and the equiv-
alent flow rate, obtained by weighting heavy vehicles, like
trucks, differently from lighter ones such as cars. In our
definition, we assume that a truck contributes 8 times the
flow rate from a single car, reflecting the fact that it pro-
duces a higher noise. The number 8 used here has been
determined empirically from direct measurements of both
trucks and cars noises. Finally, we extend this study to the

corresponding logarithmic counterparts. This is due to the
known fact that the logarithmof flow rate iswell correlated
with the associated traffic noise [20].

The results of clustering are reported in Table 2. As
one can see, the normal flow rate clusters present a higher
overlap with the corresponding noise clusters, yielding a
97% of superposition for the large clusters (33 and 42, for
the noise and normal flow rate clusters, respectively), and
68% for the small ones (25 and 16, respectively).

As one can see from Fig. 3, the road stretch F30 be-
longs to Cluster 2 (S) for the noise levels, while it falls in-
side Cluster 1 (L) for the flow rate. This discrepancy, which
occurs in a rather small number of cases, can be due to
the single one-daymeasurement of thenoisewhich is com-
pared with a model calculation for the corresponding an-
nual mean values. Despite this mismatch, the absolute er-
rors associatedwith the present predictions are the follow-
ing: εF = 0.04 (2.62 dB) to be compared with the mean
cluster value εF = 0.022 (1.44 dB), while for the Log F we
find, εLogF = 0.03 (1.9 dB)to be compared with the mean
value εLogF = 0.02 (1.3 dB).

4 Model and Results
In this section, in view of the previous results suggesting a
strong correlation between flow rate and noise, we wish to
extend this concept towards a direct comparison between
the two quantities. This has been done in the past (see
e.g. [20]), but here we examine this relationship quantita-
tively in detail. We use two approaches, one is just a linear
relation between flow rate and noise,

LAeqhij /LAeqMaxj = α · Fnij/FnMaxj + β, (3)

and a similar one for the logarithms of the flow rate,

LAeqhij /LAeqMaxj = A · LogFnij/LogFnMaxj + B (4)



136 | M. Smiraglia et al.

Figure 3: Example of stretch (F30) which belongs to the ‘small’ cluster for noise while included in the ‘large’ cluster from the flow rate anal-
ysis. (Left panel) Equivalent noise level results for road F30. As shown, F30 belongs to the small cluster (Cluster 2). (Right panel) Traflc flow
rate for F30 showing that it belongs to the large cluster (Cluster 1). In both cases, the continuous lines for the mean values correspond to
the cluster at which F30 belongs to, while the dashed lines display the result for the opposite cluster.

Figure 4: Fitting of the normalized equivalent level, LAeq, vs intraday hour, for the two models, Eq. (3) for F and Eq. (4) for LogF, for the
street Bezzi. Least square fit parameters for: (F) α = 0.118, β = 0.892, and mean square fit error ε = 0.015 (1.079 dB); (LogF) A = 0.381,
B = 0.616, and εLog = 0.006 (0.420 dB).

The unknown constants (α, β; A, B) are determined by
a least square fitting. Despite the fact that the linear rela-
tion Eq. (3) might perform less accurately than the most
accepted logarithmic dependence, we still keep it here to
have a counterpart for a better assessment of the range of
validity of the analytical results. To be noted is that Eq. (4)
reduces to the linear behavior in Eq. (3) in the case of small
variations of Fn. Two typical examples of the applicationof
Eqs. (3) and (4) are shown in Fig. 4, for Bezzi street, belong-
ing to the large cluster (L, cluster 2), and Fig. 5 for Gareg-
nano street, belonging to the small cluster (S, cluster 1).

In keepingwith a strategy aimed at predicting the traf-
fic noise of an arbitrary street for which the parameters
(α, β; A, B) are not known, we reconsider the examples
discussed above, Bezzi and Garegnano streets, by using
the corresponding mean cluster values (αL,S, βL,S; AL,S,
BL,S) for predicting the normalized hourly traffic noise.

The mean values are obtained for each cluster separately
as, αL,S =

(︁
ΣNL,Sk=1 αk

)︁
/NL,S, and similar relations for the

remaining parameters. Here, NL,S are the number of ele-
ments in each cluster (L,S). The results are shown in Figs. 6
and 7, respectively.

In Table 3we report the relative and absolute errors (in
dB) resulting from the fits using Eqs. (3) and (4) for the nor-
mal traffic flow rate and its logarithm. The cluster used are
those obtained from the normal traffic low rates and loga-
rithms. To obtain the absolute values of the error we eval-
uate themean values within each normal flow rate cluster,
yielding the values (65.5, 69.4) dB for Fn and (63.9, 69.4) dB
for Log Fn, for Cluster 1 (Large) and 2 (Small), respectively.

As is apparent from the above results, the logarithmic
fit is superior, suggesting an accurate way for predicting
the hourly noise in a given street from the mean cluster



Predicting Hourly Traflc Noise for the DynaMap Project | 137

Figure 5: Fitting of the normalized equivalent level, LAeq, vs intraday hour, for the two models, Eq. (3) and Eq. (4), for a second example,
street Garegnano. Least square fit parameters for: (F) α = 0.168, β = 0.853, and mean square fit error ε = 0.063 (3.919 dB); (LogF)
A = 0.168, B = 0.818, and εLog = 0.051 (3.175 dB).

Figure 6: Fitting of the normalized equivalent level, LAeq, vs intraday hour, for the two models, Eq. (3) and Eq. (4), using the mean cluster
values for the street Bezzi (αL = 0.123, βL = 0.881) and (AL = 0.309, BL = 0.678), yielding mean square fits errors: ε = 0.016 (1.209 dB)
(F) and ε = 0.010 (0.701 dB) (LogF).

Figure 7: Fitting of the normalized equivalent level, LAeq, vs intraday hour, for the two models, Eq. (3) and Eq. (4), using the mean cluster
values for the street Garegnano (αS = 0.159, βS = 0.874) and (AS = 0.148, BS = 0.849), yielding mean square fits errors: ε = 0.065
(4.081 dB) (F) and ε = 0.056 (3.472 dB) (LogF).
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Table 3:Mean errors from predicted noises with respect to measured ones, for the normal traflc flow rates and for their logarithms calcu-
lated within their corresponding clusters (cf. Table 1). The street parameters refer to the single fitting parameters for each street, averaged
over the whole cluster (S, L). On the right side of the table we report the errors when the mean cluster values are used for obtaining the
predicted noise. In parenthesis we display the absolute errors in dB.

Cluster Street parameters Mean cluster parameters
εF εlogF εF εlogF

L (1) 0.022 (1.531 dB) 0.017 (1.214 dB) 0.030 (2.063 dB) 0,026 (1.827 dB)
S (2) 0.051 (3.353 dB) 0.043 (2.761 dB) 0.056 (3.664 dB) 0,049 (3.162 dB)

Figure 8: Plot of the maximum equivalent level, LAeqmax, vs the
logarithm of the maximum flow rate, Log Fnmax for all the stretches
considered here. The straight line a least-square-fit with equation:
y = Amaxx + Bmax, with Amax = 4.43 and Bmax = 54.45, yielding a
mean error (standard deviation of the data from the fit) of ε ≈ 6%.

values (A, B) to which it belongs. In order to determine
the cluster membership, one can compare the hourly flow
rate record of the street under considerationwith themean
clusters results, and taking the one for which the sum of
the squares of hourly differences is smaller. To be noted is
that the exclusion of the single street from the database for
the purpose of predicting its noise behavior from the flow
rate, using either its own fit parameters or the mean clus-
ter ones, does not change the result in a significant way.
We have tested this for all road stretches considered and
the differences fall much below the errors reported in Ta-
ble 3.

In the applications, Eq. (4) can be used to predict the
relative equivalent level of a road stretch j. In order to get
the absolute value of noise, one needs to multiply it by
LAeqmaxj. The latter can be estimated from the correspond-
ingmaximum value of the flow rate, Log Fnmaxj, according
to

LAeqmax = Amax · LogFnMax + Bmax (5)

where Amax and Bmax are least-square fitting parameters.
Results of such a fit for our 58 noise stations are reported

in Fig. 8. The mean prediction error of the fit is given by
the square-root of the mean square differences between
the straight line and each measured value LAeqmax, yield-
ing an error of about 6%. Some conspicuous deviations are
observed for large values of Fnmax which can be attributed
to the traffic model used to evaluate the normal flow rate.
In what follows we briefly discuss how the present results
could be of relevance to the DynaMap project.

5 Application to DynaMap
The original idea of DynaMap is that the cluster discrimi-
nant relies on a single hour, the rush-hour (typically 8:00–
9:00 am), using the corresponding peak vehicular flow for
separating roads into two sets. Roads having a rush hour
peak flow above the threshold belong say, to Cluster 1,
while those roads having smaller traffic flow rates, fall into
Cluster 2. The clustering approach discussed here can be
seen as an improvement on this hard threshold method,
since we do not use just one single value of the traffic flow
rate (rush hour), but the whole 24 hours profile. Regard-
ing the real-time implementation of the acoustic mapwith
an update time interval of (5, 10, 20, etc.) minutes, each
stretch will just follow the corresponding Cluster (1 or 2)
of noise sensors, by considering in addition the normal-
ization noise value obtained from Eq. (5) if absolute noise
predictions are required.

DynaMap requires the choice of an optimal non-
acoustic parameter for each road stretch within the urban
area of interest. Our present study suggests that a useful
quantity can be obtained by considering the whole hourly
traffic flow rate. In particular, the logarithm of the normal
flow rate, which yields the smallest prediction error (see
Table 3), can be suggested as the appropriate quantity for
determining the actual non-acoustic discriminant param-
eter.
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6 Conclusions
The present calculations suggest that the concept of clus-
tering, for both the traffic noise and the normal traffic flow
rate, is a very promising approach to deal with the diffi-
cult problem of predicting the traffic noise in a complex
urban network. We can safely say that despite the com-
plexity of such large human built-up area a rather simple
scheme seems to emerge suggesting an accurate way to
predict the time behavior of a single component in the net-
work. The present results provide a basis for building up
a quantitative relation between noise and flow rate tem-
poral dependences, constituting the core structure within
the DYNAMAP project. The latter is intended to be based
on the recording of the traffic noise data continuously but
over a limited set of monitoring stations. The traffic noise
for the remaining (non-monitored) road stretches can be
predicted using information of the corresponding traffic
flow rates (non-acoustic parameter), which are available
for the interested urban zone. This implies that seasonal
variations are implicitly taken into account. The result-
ing dynamic maps are expected to be updated on a small
time window. More generally, DYNAMAP, being a real time
map of traffic noise, could be extended to inform about the
volumetric concentration of pollutant agents in the atmo-
sphere, thus providing a visual and constantly updated
map of air quality, displaying also the value and evolu-
tion of meteorological parameters, such as air humidity or
wind speed. This same idea could be expanded to create
dynamic maps of human-caused environmental parame-
ters, such as traffic density.
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