Abstract
Fractionation of cellulose fibers is performed within a circular mini-channel (diameter 7 mm) to realize a novel fractionation principle. We show that fractionation within a single-floc regime relies on the formation of a rigid network in cases where the crowding number is chosen to be greater than 60. Fractionation is performed for channel Reynolds numbers
Funding statement: The authors gratefully acknowledge the industrial partners Sappi Austria Produktions-GmbH & Co KG, Zellstoff Pöls AG and Mondi Frantschach GmbH, and the Competence Centers for Excellent Technologies (COMET), promoted by BMVIT, BMDW, Styria and Carinthia and managed by FFG, for their financial support of the K-project FLIPPR² (Future Lignin and Pulp Processing Research – PROCESS INTEGRATION).
Acknowledgments
We gratefully acknowledge the help of Gregor Schaub in performing pressure drop experiments.
Conflict of interest: The authors declare no conflicts of interest.
Appendix A Experimental data
Experimental data, i. e. fiber sort, feed flow rate, accept flow rate, Reynolds number, accept ratio, slot width, radial fractionation velocity, feed consistency and corresponding crowding number for investigation of network effects on fractionation.
Exp-no. | Pulp | ||||||||
(ml/min) | (ml/min) | – | (%) | (mm) | (m/s) | (%) | – | ||
70-1 | CP | 6,126 | 123 | 18,572 | 2.0 | 1.6 | 2.0E-02 | 0.49 | 62 |
70-2 | CP | 6,128 | 121 | 18,576 | 2.0 | 1.6 | 2.0E-02 | 0.58 | 73 |
70-3 | CP | 6,051 | 123 | 18,342 | 2.0 | 1.6 | 2.0E-02 | 0.67 | 85 |
139-0 | CP | 6,100 | 119 | 18,492 | 2.0 | 1.6 | 1.9E-02 | 0.21 | 27 |
140-0 | CP | 6,062 | 121 | 18,377 | 2.0 | 1.6 | 2.0E-02 | 0.08 | 10 |
141-0 | 5,988 | 122 | 18,152 | 2.0 | 1.6 | 2.0E-02 | 0.29 | 19 | |
142-0 | 6,168 | 115 | 18,698 | 1.9 | 1.6 | 1.9E-02 | 0.40 | 55 | |
144-0 | 6,111 | 121 | 18,525 | 2.0 | 1.6 | 2.0E-02 | 0.35 | 91 |
Experimental data, i. e. fiber sort, feed flow rate, accept flow rate, Reynolds number, accept ratio, slot width, radial fractionation velocity, feed consistency and corresponding crowding number for investigation of Reynolds number on fractionation at constant gap width of
Exp-no. | Pulp | ||||||||
(ml/min) | (ml/min) | – | (%] | (mm) | (m/s) | (%) | – | ||
62-1 | CP | 8,460 | 81 | 25,647 | 1.0 | 1.6 | 1.3E-02 | 0.47 | 60 |
62-2 | CP | 8,550 | 86 | 25,920 | 1.0 | 1.6 | 1.4E-02 | 0.63 | 80 |
62-3 | CP | 8,409 | 84 | 25,492 | 1.0 | 1.6 | 1.4E-02 | 0.50 | 63 |
63-1 | CP | 8,400 | 173 | 25,465 | 2.1 | 1.6 | 2.8E-02 | 0.64 | 81 |
63-2 | CP | 8,410 | 183 | 25,494 | 2.2 | 1.6 | 3.0E-02 | 0.65 | 83 |
63-3 | CP | 8,526 | 171 | 25,846 | 2.0 | 1.6 | 2.8E-02 | 0.57 | 72 |
64-1 | CP | 8,400 | 348 | 25,465 | 4.1 | 1.6 | 5.6E-02 | 0.49 | 62 |
64-2 | CP | 8,400 | 335 | 25,465 | 4.0 | 1.6 | 5.4E-02 | 0.76 | 97 |
64-3 | CP | 8,352 | 343 | 25,318 | 4.1 | 1.6 | 5.6E-02 | 0.62 | 79 |
66-1 | CP | 7,414 | 306 | 22,477 | 4.1 | 1.6 | 5.0E-02 | 0.56 | 71 |
66-2 | CP | 7,403 | 290 | 22,441 | 3.9 | 1.6 | 4.7E-02 | 0.53 | 67 |
66-3 | CP | 7,424 | 297 | 22,506 | 4.0 | 1.6 | 4.8E-02 | 0.57 | 72 |
67-1 | CP | 7,457 | 151 | 22,606 | 2.0 | 1.6 | 2.4E-02 | 0.59 | 75 |
67-2 | CP | 7,354 | 144 | 22,294 | 2.0 | 1.6 | 2.3E-02 | 0.55 | 69 |
67-3 | CP | 7,425 | 148 | 22,509 | 2.0 | 1.6 | 2.4E-02 | 0.54 | 69 |
68-1 | CP | 7,457 | 75 | 22,606 | 1.0 | 1.6 | 1.2E-02 | 0.56 | 71 |
68-2 | CP | 7,405 | 69 | 22,450 | 0.9 | 1.6 | 1.1E-02 | 0.61 | 78 |
68-3 | CP | 7,397 | 75 | 22,425 | 1.0 | 1.6 | 1.2E-02 | 0.60 | 76 |
69-1 | CP | 6,130 | 63 | 18,584 | 1.0 | 1.6 | 1.0E-02 | 0.51 | 65 |
69-2 | CP | 6,103 | 62 | 18,501 | 1.0 | 1.6 | 1.0E-02 | 0.62 | 79 |
69-3 | CP | 6,101 | 66 | 18,496 | 1.1 | 1.6 | 1.1E-02 | 0.63 | 80 |
70-1 | CP | 6,126 | 123 | 18,572 | 2.0 | 1.6 | 2.0E-02 | 0.49 | 62 |
70-2 | CP | 6,128 | 121 | 18,576 | 2.0 | 1.6 | 2.0E-02 | 0.58 | 73 |
70-3 | CP | 6,051 | 123 | 18,342 | 2.0 | 1.6 | 2.0E-02 | 0.67 | 85 |
71-1 | CP | 6,126 | 254 | 18,572 | 4.1 | 1.6 | 4.1E-02 | 0.49 | 63 |
71-2 | CP | 6,082 | 243 | 18,438 | 4.0 | 1.6 | 3.9E-02 | 0.53 | 68 |
71-3 | CP | 6,111 | 243 | 18,525 | 4.0 | 1.6 | 3.9E-02 | 0.66 | 83 |
72-1 | CP | 4,687 | 191 | 14,208 | 4.1 | 1.6 | 3.1E-02 | 0.59 | 74 |
72-2 | CP | 4,737 | 186 | 14,360 | 3.9 | 1.6 | 3.0E-02 | 0.63 | 79 |
72-3 | CP | 4,876 | 196 | 14,783 | 4.0 | 1.6 | 3.2E-02 | 0.63 | 80 |
73-1 | CP | 4,718 | 93 | 14,303 | 2.0 | 1.6 | 1.5E-02 | 0.48 | 61 |
73-2 | CP | 4,844 | 91 | 14,684 | 1.9 | 1.6 | 1.5E-02 | 0.54 | 69 |
73-3 | CP | 4,774 | 96 | 14,472 | 2.0 | 1.6 | 1.5E-02 | 0.48 | 60 |
74-1 | CP | 4,700 | 46 | 14,248 | 1.0 | 1.6 | 7.5E-03 | 0.58 | 73 |
74-2 | CP | 4,805 | 46 | 14,568 | 0.9 | 1.6 | 7.4E-03 | 0.59 | 75 |
74-3 | CP | 4,760 | 48 | 14,429 | 1.0 | 1.6 | 7.8E-03 | 0.59 | 75 |
75-1 | CP | 3,826 | 38 | 11,599 | 1.0 | 1.6 | 6.2E-03 | 0.56 | 71 |
75-2 | CP | 3,736 | 38 | 11,326 | 1.0 | 1.6 | 6.2E-03 | 0.54 | 69 |
75-3 | CP | 3,799 | 42 | 11,516 | 1.1 | 1.6 | 6.8E-03 | 0.51 | 65 |
76-1 | CP | 3,826 | 78 | 11,599 | 2.0 | 1.6 | 1.3E-02 | 0.50 | 64 |
76-2 | CP | 3,887 | 79 | 11,782 | 2.0 | 1.6 | 1.3E-02 | 0.57 | 72 |
76-3 | CP | 3,955 | 81 | 11,990 | 2.1 | 1.6 | 1.3E-02 | 0.44 | 56 |
77-1 | CP | 3,831 | 164 | 11,613 | 4.3 | 1.6 | 2.7E-02 | 0.45 | 57 |
77-2 | CP | 3,810 | 159 | 11,551 | 4.2 | 1.6 | 2.6E-02 | 0.51 | 65 |
77-3 | CP | 3,794 | 149 | 11,501 | 3.9 | 1.6 | 2.4E-02 | 0.47 | 59 |
Experimental data, i. e. fiber sort, feed flow rate, accept flow rate, Reynolds number, accept ratio, slot width, radial fractionation velocity, feed consistency and corresponding crowding number for investigation of hydrodynamic process parameters on fractionation at variable gap width of
Exp-no. | Pulp | ||||||||
(ml/min) | (ml/min) | – | (%) | (mm) | (m/s) | (%) | – | ||
69-1 | CP | 6,130 | 63 | 18,584 | 1.0 | 1.6 | 1.02E-02 | 0.51 | 65 |
69-2 | CP | 6,103 | 62 | 18,501 | 1.0 | 1.6 | 1.00E-02 | 0.62 | 79 |
69-3 | CP | 6,101 | 66 | 18,496 | 1.1 | 1.6 | 1.06E-02 | 0.63 | 80 |
70-1 | CP | 6,126 | 123 | 18,572 | 2.0 | 1.6 | 1.99E-02 | 0.49 | 62 |
70-2 | CP | 6,128 | 121 | 18,576 | 2.0 | 1.6 | 1.96E-02 | 0.58 | 73 |
70-3 | CP | 6,051 | 123 | 18,342 | 2.0 | 1.6 | 1.99E-02 | 0.67 | 85 |
71-1 | CP | 6,126 | 254 | 18,572 | 4.1 | 1.6 | 4.11E-02 | 0.49 | 63 |
71-2 | CP | 6,082 | 243 | 18,438 | 4.0 | 1.6 | 3.93E-02 | 0.53 | 68 |
71-3 | CP | 6,111 | 243 | 18,525 | 4.0 | 1.6 | 3.93E-02 | 0.66 | 83 |
112-1 | CP | 6,107 | 65 | 18,515 | 1.1 | 0.6 | 2.80E-02 | 0.53 | 67 |
112-2 | CP | 6,120 | 60 | 18,553 | 1.0 | 0.6 | 2.61E-02 | 0.52 | 66 |
112-3 | CP | 6,092 | 62 | 18,468 | 1.0 | 0.6 | 2.66E-02 | 0.65 | 82 |
113-1 | CP | 6,114 | 120 | 18,534 | 2.0 | 0.6 | 5.17E-02 | 0.72 | 91 |
113-2 | CP | 6,073 | 127 | 18,412 | 2.1 | 0.6 | 5.51E-02 | 0.56 | 72 |
113-3 | CP | 6,073 | 121 | 18,411 | 2.0 | 0.6 | 5.23E-02 | 0.70 | 89 |
114-1 | CP | 6,165 | 246 | 18,690 | 4.0 | 0.6 | 1.06E-01 | 0.74 | 94 |
114-2 | CP | 6,137 | 244 | 18,603 | 4.0 | 0.6 | 1.05E-01 | 0.64 | 81 |
114-3 | CP | 6,025 | 240 | 18,266 | 4.0 | 0.6 | 1.04E-01 | 0.62 | 79 |
115-1 | CP | 6,080 | 522 | 18,432 | 8.6 | 0.6 | 2.26E-01 | 0.654 | 83 |
115-2 | CP | 6,087 | 492 | 18,452 | 8.1 | 0.6 | 2.13E-01 | 0.63 | 80 |
115-3 | CP | 6,188 | 489 | 18,758 | 7.9 | 0.6 | 2.11E-01 | 0.58 | 74 |
116-1 | CP | 6,206 | 834 | 18,814 | 13.4 | 0.6 | 3.60E-01 | 0.626 | 79 |
116-2 | CP | 6,215 | 802 | 18,840 | 12.9 | 0.6 | 3.46E-01 | 0.58 | 74 |
116-3 | CP | 6,202 | 780 | 18,802 | 12.6 | 0.6 | 3.37E-01 | 0.68 | 86 |
117-1 | CP | 6,156 | 62 | 18,663 | 1.0 | 2.6 | 6.15E-03 | 0.62 | 78 |
117-2 | CP | 6,087 | 62 | 18,452 | 1.0 | 2.6 | 6.19E-03 | 0.52 | 66 |
117-3 | CP | 6,160 | 64 | 18,675 | 1.0 | 2.6 | 6.40E-03 | 0.69 | 87 |
118-1 | CP | 6,138 | 128 | 18,606 | 2.1 | 2.6 | 1.28E-02 | 0.66 | 83 |
118-2 | CP | 6,054 | 119 | 18,353 | 2.0 | 2.6 | 1.18E-02 | 0.54 | 69 |
118-3 | CP | 6,083 | 123 | 18,441 | 2.0 | 2.6 | 1.23E-02 | 0.61 | 77 |
119-1 | CP | 6,104 | 242 | 18,505 | 4.0 | 2.6 | 2.42E-02 | 0.52 | 66 |
119-2 | CP | 6,097 | 240 | 18,483 | 3.9 | 2.6 | 2.39E-02 | 0.82 | 104 |
119-3 | CP | 6,074 | 248 | 18,414 | 4.1 | 2.6 | 2.47E-02 | 0.70 | 89 |
120-1 | CP | 6,076 | 484 | 18,419 | 8.0 | 2.6 | 4.82E-02 | 0.62 | 79 |
120-2 | CP | 6,094 | 500 | 18,474 | 8.2 | 2.6 | 4.98E-02 | 0.52 | 66 |
120-3 | CP | 6,112 | 461 | 18,528 | 7.5 | 2.6 | 4.60E-02 | 0.66 | 84 |
121-1 | CP | 6,025 | 803 | 18,264 | 13.3 | 2.6 | 8.01E-02 | 0.631 | 80 |
121-2 | CP | 6,149 | 801 | 18,639 | 13.0 | 2.6 | 7.98E-02 | 0.6 | 76 |
121-3 | CP | 6,192 | 801 | 18,771 | 12.9 | 2.6 | 7.98E-02 | 0.54 | 69 |
122-1 | CP | 6,171 | 30 | 18,706 | 0.5 | 0.6 | 1.30E-02 | 0.48 | 61 |
122-2 | CP | 6,120 | 31 | 18,553 | 0.5 | 0.6 | 1.34E-02 | 0.65 | 83 |
122-3 | CP | 6,164 | 31 | 18,687 | 0.5 | 0.6 | 1.32E-02 | 0.51 | 64 |
145-1 | CP | 6,099 | 120 | 18,489 | 2.0 | 0.3 | 1.15E-01 | 0.742 | 94 |
145-2 | CP | 6,133 | 124 | 18,593 | 2.0 | 0.3 | 1.19E-01 | 0.77 | 97 |
145-3 | CP | 6,153 | 126 | 18,653 | 2.1 | 0.3 | 1.21E-01 | 0.56 | 70 |
146-1 | CP | 6,126 | 57 | 18,572 | 0.9 | 0.3 | 5.51E-02 | 0.7 | 89 |
146-2 | CP | 6,048 | 60 | 18,335 | 1.0 | 0.3 | 5.76E-02 | 0.72 | 91 |
146-3 | CP | 6,116 | 60 | 18,542 | 1.0 | 0.3 | 5.74E-02 | 0.55 | 70 |
147-1 | CP | 6,129 | 247 | 18,580 | 4.0 | 0.3 | 2.37E-01 | 0.615 | 78 |
147-2 | CP | 6,012 | 245 | 18,226 | 4.1 | 0.3 | 2.35E-01 | 0.66 | 84 |
147-3 | CP | 6,097 | 243 | 18,483 | 4.0 | 0.3 | 2.33E-01 | 0.63 | 80 |
150-1 | CP | 6,130 | 461 | 18,585 | 7.5 | 0.3 | 4.43E-01 | 0.62 | 79 |
150-2 | CP | 6,073 | 479 | 18,410 | 7.9 | 0.3 | 4.60E-01 | 0.69 | 88 |
150-3 | CP | 6,110 | 479 | 18,523 | 7.8 | 0.3 | 4.60E-01 | 0.6 | 76 |
151-1 | CP | 6,135 | 763 | 18,598 | 12.4 | 0.3 | 7.32E-01 | 0.58 | 73 |
151-2 | CP | 6,085 | 720 | 18,446 | 11.8 | 0.3 | 6.91E-01 | 0.65 | 82 |
151-3 | CP | 6,164 | 729 | 18,687 | 11.8 | 0.3 | 6.99E-01 | 0.61 | 77 |
157-1 | CP | 6,111 | 491 | 18,527 | 8.0 | 1.6 | 7.96E-02 | 0.58 | 74 |
157-2 | CP | 6,088 | 474 | 18,457 | 7.8 | 1.6 | 7.69E-02 | 0.58 | 74 |
157-3 | CP | 6,088 | 478 | 18,454 | 7.9 | 1.6 | 7.75E-02 | 0.58 | 73 |
158-1 | CP | 6,176 | 733 | 18,722 | 11.9 | 1.6 | 1.19E-01 | 0.6 | 76 |
158-2 | CP | 6,092 | 750 | 18,468 | 12.3 | 1.6 | 1.21E-01 | 0.63 | 81 |
158-3 | CP | 6,000 | 741 | 18,189 | 12.3 | 1.6 | 1.20E-01 | 0.77 | 97 |
References
Abbasi Hoseini, A., Lundell, F., Andersson, H.I. (2015) Finite-length effects on dynamical behavior of rod-like particles in wall-bounded turbulent flow. Int. J. Multiph. Flow 76:13–21.10.1016/j.ijmultiphaseflow.2015.05.015Search in Google Scholar
Bergström, R. Fibre Flow Mechanisms. Royal Institute of Technology, Stockholm, 2005.Search in Google Scholar
Cotas, C., Branco, B., Asendrych, D., Garcia, F., Faia, P., Rasteiro, M.G. (2017) Experimental study and computational fluid dynamics modeling of pulp suspensions flow in a pipe. J. Fluids Eng. 139(7):071303.10.1115/1.4036165Search in Google Scholar
DIN 66142-3:1982-09 (n. d.) Representing and characterizing the separation of disperse materials; Selection and determination of parameters for industrial separation processes.Search in Google Scholar
Duffy, G.G. (2003) A new method of fibre fractionation. In: Appita Annu. Conf. Exhib., Melbourne. pp. 453–458.Search in Google Scholar
Duffy, G.G., Abdullah, L. (2003) Fibre suspension flow in small diameter pipes. Appita J. 56(4):290–295.Search in Google Scholar
Duffy, G.G., Ramachandra, S. (2005) Validation of flow mechanisms of fibre suspensions in small diameter pipes. Appita J. 58(5):374–377.Search in Google Scholar
Duffy, G.G., Titchener, A.L., Lee, P.F.W., Moller, K. (1976) The mechanisms of flow of pulp suspensions in pipes. Appita J. 29(5):363–370.Search in Google Scholar
Fock, H., Claesson, J., Rasmuson, A., Wikström, T. (2011) Near wall effects in the plug flow of pulp suspensions. Can. J. Chem. Eng. 89(5):1207–1216.10.1002/cjce.20471Search in Google Scholar
Fock, H., Rasmuson, A. (2008) Near wall studies of pulp suspension flow using PIV. Nord. Pulp Pap. Res. J. 23(1):120–125.10.3183/npprj-2008-23-01-p120-125Search in Google Scholar
Forgacs, O.L., Robertson, A.A., Mason, S.G. (1958) The hydrodynamic behaviour of paper-making fibres. Pulp Pap. Mag. Can. 117–128.Search in Google Scholar
Gooding, R.W. The Passage of Fibres Through Slots in Pulp Screening. University of British Columbia, 1986.Search in Google Scholar
Gooding, R.W., Kerekes, R.J., Salcudean, M. (2001) The flow resistance of slotted apertures in pulp screens. In: 12th Fundam. Res. Symp.Search in Google Scholar
Haavisto, S., Cardona, M.J., Salmela, J., Powell, R.L., McCarthy, M.J., Kataja, M., Koponen, A.I. (2017) Experimental investigation of the flow dynamics and rheology of complex fluids in pipe flow by hybrid multi-scale velocimetry. Exp. Fluids 58(11):1–13.10.1007/s00348-017-2440-9Search in Google Scholar
Hubbe, M.A. (2007) Flocculation and redispersion of cellulosic fiber suspensions: a review of effects of hydrodynamic shear and polyelectrolytes. BioResources 2(2):296–331.10.15376/biores.2.2.296-331Search in Google Scholar
Jäsberg, A. Flow Behaviour of Fibre Suspension in Straight Pipes: New Experimental Techniques and Multiphase Modeling. University of Jyväskylä, 2007.Search in Google Scholar
Jäsberg, A., Koponen, A., Kataja, M., Timonen, J. (2000) Hydrodynamical forces acting on particles in a two-dimensional flow near a solid wall. Comput. Phys. Commun. 129(1):196–206.10.1016/S0010-4655(00)00107-7Search in Google Scholar
Karinkanta, P., Laitinen, O. (2017) Use of tube flow fractionation in wood powder characterisation. Biomass Bioenergy 99:122–138.10.1016/j.biombioe.2017.02.011Search in Google Scholar
Kerekes, R.J., Schell, C.J. (1992) Characterization of fibre flocculation regimes by a crowding factor. J. Pulp Pap. Sci. 18(1):32–38.Search in Google Scholar
König, J. Experimental Study of Separation of Fines from Fiber Suspensions with Hydrodynamic Filtration. University of Technology Graz, 2016.Search in Google Scholar
Kumar, A. Passage of Fibres Through Screen Apertures. University of British Columbia, 1991.Search in Google Scholar
Laitinen, O., Kemppainen, K., Stoor, T., Niinimäki, J. (2011) Fractionation of pulp and paper particles selectively by size. BioResources 6(1):672–685.10.15376/biores.6.1.672-685Search in Google Scholar
Madani, A. Fractionation of Particle Suspensions in a Viscoplastic Fluid: Towards a Novel Process. University of British Columbia, 2011.Search in Google Scholar
Martinez, D.M., Buckley, K., Lindström, A., Thiruvengadaswamy, R., Olson, J.A., Ruth, T.J., Kerekes, R.J. (2001) Characterizing the mobility of papermaking fibres during sedimentation. In: Sci. Papermak. 12th Fundam. Res. Symp. 16 (September 2001). pp. 225–254.Search in Google Scholar
Mason, S.G. (1950) The flocculation of pulp suspensions and the formation of paper. Tappi J. 33(9):440–444.Search in Google Scholar
Medhi, B.J., Ashok Kumar, A., Singh, A. (2011) Apparent wall slip velocity measurements in free surface flow of concentrated suspensions. Int. J. Multiph. Flow 37(6):609–619.10.1016/j.ijmultiphaseflow.2011.03.006Search in Google Scholar
Olson, J.A. The Effect of Fibre Length on Passage Through Narrow Apertures. University of British Columbia, 1996.Search in Google Scholar
Olson, J.A. (2001) Fibre length fractionation caused by pulp screening, slotted screen plates. J. Pulp Pap. Sci. 27(8):255–261.Search in Google Scholar
Olson, J.A., Wherrett, G. (1998) A model of fibre fractionation by slotted screen apertures. J. Pulp Pap. Sci. 24(12):398–403.Search in Google Scholar
Pettersson, A.J., Wikström, T., Rasmuson, A. (2006) Near wall studies of pulp suspension flow using LDA. Can. J. Chem. Eng. 84:422–430 (August).10.1002/cjce.5450840403Search in Google Scholar
Redlinger-Pohn, J.D., Bauer, W., Radl, S. (2017a) Fractionation of fibre pulp in a hydrodynamic fractionation device: influence of reynolds number and accept flow rate. In: Trans. 16Th Fundam. Res. Symp. (Oxford, September 2017). pp. 209–228.Search in Google Scholar
Redlinger-Pohn, J.D., König, J., Radl, S. (2017b) Length-selective separation of cellulose fibres by hydrodynamic fractionation. Chem. Eng. Res. Des. 126:54–66 (Institution of Chemical Engineers).10.1016/j.cherd.2017.08.001Search in Google Scholar
Robertson, A.A., Mason, S.G. (1957) The flow characteristics of dilute fiber suspensions. Tappi J. 40(5):326–334.Search in Google Scholar
Sha, J., Nikbakht, A., Wang, C., Zhang, H., Olson, J. (2015) The effect of consistency and freeness on the yield stress of chemical pulp fibre suspensions. BioResources 10(3):4287–4299.10.15376/biores.10.3.4287-4299Search in Google Scholar
Soszynski, R.M., Kerekes, R.J. (1988) Elastic interlocking of nylon fibers suspended in liquid. Part 2. Process of interlocking. Nord. Pulp Pap. Res. J. 3(4):180–184.10.3183/npprj-1988-03-04-p180-184Search in Google Scholar
Steenberg, B., Wahren, D. (1960) Concentration gradients in boundary layers of streaming fibre suspensions. Sven. Papp.tidn. 63(11):347–355.Search in Google Scholar
Tamura, A., Sugaya, S., Yamada, M., Seki, M. (2011) Tilted-branch hydrodynamic filtration for length-dependent sorting of rod-like particles. In: 15th Int. Conf. Miniaturized Syst. Chem. Life Sci. (c). pp. 1343–1345.Search in Google Scholar
Vollmer, H., Fredlund, M., Grundström, K.-J. (2001) Characterization of fractionation equipment. In: Ecopapertech Conf. 3. pp. 27–35.Search in Google Scholar
Walmsley, M., Atkins, M. (2003) Comparing fibre length fractionation of a laboratory flow channel to an industrial pressure screen. In: Proc. 57th Appita Annu. Gen. Conf. Exhib. pp. 369–376.Search in Google Scholar
Weber, A.P., Legenhausen, K. (2014) Characterization of a classification or separation process. Ullmann’s Encycl. Ind. Chem. pp. 1–11.10.1002/14356007.b02_02.pub3Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston