Abstract
A priori crystal structure prediction techniques have been used to explore the phase diagrams of hydrides of main group elements under pressure. A number of novel phases with the chemical formulas MHn, n > 1 and M = Li, Na, K, Rb, Cs; MHn, n > 2 and M= Mg, Ca, Sr, Ba; HnI with n > 1 and PH, PH2, PH3 have been predicted to be stable at pressures achievable in diamond anvil cells. The hydrogenic lattices within these phases display a number of structural motifs including H2δ− , H−, H−3 , as well as one-dimensional and three-dimensional extended structures. A wide range of superconducting critical temperatures, Tcs, are predicted for these hydrides. The mechanism of metallization and the propensity for superconductivity are dependent upon the structural motifs present in these phases, and in particular on their hydrogenic sublattices. Phases that are thermodynamically unstable, but dynamically stable, are accessible experimentally. The observed trends provide insight on how to design hydrides that are superconducting at high temperatures.
References
[1] N. W. Ashcroft. Hydrogen Dominant Metallic Alloys: High Temperature Superconductors? Phys. Rev. Lett. 92, 2004, 187002 (1-4).10.1103/PhysRevLett.92.187002Search in Google Scholar PubMed
[2] N. W. Ashcroft. Symmetry and Heterogeneity in High Temperature Superconductors. NATO Science Series II: Mathematics, Physics and Chemistry 214, 3-20, 2006.Search in Google Scholar
[3] J. Feng,W. Grochala, T. Jaron, R. Hoffmann, A. Bergara, and N.W. Ashcroft. Structures and Potential Superconductivity in SiH4 at High Pressure: En Route to Metallic Hydrogen. Phys. Rev. Lett. 96, 2006, 017006 (1-4).10.1103/PhysRevLett.96.017006Search in Google Scholar PubMed
[4] C. J. Pickard and R. J. Needs. High-Pressure Phases of Silane. Phys. Rev. Lett. 97, 2006, 045504 (1-4).10.1103/PhysRevLett.97.045504Search in Google Scholar PubMed
[5] O. Degtyareva, M. M. Canales, A. Bergara, X. Chen, Y. Song, V. V. Struzhkin, H.Mao, and R. J. Hemley. Crystal Structure of SiH4 at High Pressure. Phys. Rev. B 76, 2007, 064123 (1-4).10.1103/PhysRevB.76.064123Search in Google Scholar
[6] Y. Yao, J. S. Tse, Y.Ma, and K. Tanaka. Superconductivity in High- Pressure SiH4. EPL 78, 2007, 37003 (1-6).10.1209/0295-5075/78/37003Search in Google Scholar
[7] H. Zhang, X. Jin, Y. Lv, Q. Zhuang, Y. Liu, Q. Lv, K. Bao, D. Li, B. Liu, and T. Cui. High-Temperature Superconductivity in Compressed Solid Silane. Sci. Rep. 5, 2015, 8845 (1-7).10.1038/srep08845Search in Google Scholar PubMed PubMed Central
[8] M. Martinez-Canales, A. R. Oganov, Y. Ma, Y. Yan, A. O. Lyakhov, and A. Bergara. Novel Structures and Superconductivity of Silane Under Pressure. Phys. Rev. Lett. 102, 2009, 087005 (1-4).10.1103/PhysRevLett.102.087005Search in Google Scholar PubMed
[9] Y. Yao and D. D. Klug. Silane Plus Molecular Hydrogen as a Possible Pathway to Metallic Hydrogen. Proc. Natl. Acad. Sci. USA 107, 2010, 20893-20898.10.1073/pnas.1006508107Search in Google Scholar PubMed PubMed Central
[10] M. I. Eremets, I. A. Trojan, S. A. Medvedev, J. S. Tse, and Y. Yao. Superconductivity in Hydrogen DominantMaterials: Silane. Science 319, 2008, 1506-1509.10.1126/science.1153282Search in Google Scholar PubMed
[11] M.Martinez-Canales, A. Bergara, J. Feng, andW. Grochala. Pressure Induced Metallization of Germane. J. Phys. Chem. Solids 67, 2006, 2095-2099.10.1016/j.jpcs.2006.05.050Search in Google Scholar
[12] G. Gao, A. R. Oganov, A. Bergara, M. Martinez-Canales, T. Cui, T. Iitaka, Y. Ma, and G. Zou. Superconducting High Pressure Phase of Germane. Phys. Rev. Lett. 101, 2008, 107002 (1-4).10.1103/PhysRevLett.101.107002Search in Google Scholar PubMed
[13] G. Zhong, C. Zhang, X. Chen, Y. Li, R. Zhang, and H. Lin. Structural, Electronic, Dynamical, and Superconducting Properties in Dense GeH4(H2)2. J. Phys. Chem. C 116, 2012, 5225-5234.10.1021/jp211051rSearch in Google Scholar
[14] R. Szczesniak, A. P. Durajski, and D. Szczesniak. Study of the Superconducting State in the CmmmPhase of GeH4 Compound. Solid State Commun. 165, 2013, 39-44.10.1016/j.ssc.2013.04.015Search in Google Scholar
[15] C. J. Pickard and R. J. Needs. Metallization of AluminumHydride at High Pressures: A First-Principles Study. Phys. Rev. B 76, 2007, 144114 (1-5).10.1103/PhysRevB.76.144114Search in Google Scholar
[16] I. Goncharenko, M. I. Eremets, M. Hanfland, J. S. Tse, M. Amboage, Y. Yao, and I. A. Trojan. Pressure-Induced Hydrogen- Dominant Metallic State in Aluminum Hydride. Phys. Rev. Lett. 100, 2008, 045504 (1-4).10.1103/PhysRevLett.100.045504Search in Google Scholar PubMed
[17] M. Geshi and T. Fukazawa. Pressure Induced Band Gap Opening of AlH3. Physica B: Condensed Matter 411, 2013, 154-160.10.1016/j.physb.2012.11.041Search in Google Scholar
[18] A. E. Carlsson and N. W. Ashcroft. Approaches for Reducing the Insulator-Metal Transition Pressure in Hydrogen. Phys. Rev. Lett. 50, 1983, 1305-1308.10.1103/PhysRevLett.50.1305Search in Google Scholar
[19] E. Zurek, R. Hoffmann, N. W. Ashcroft, A. R. Oganov, and A. O. Lyakhov. A Little Bit of Lithium Does a Lot for Hydrogen. Proc. Natl. Acad. Sci. 106, 2009, 17640-17643.10.1073/pnas.0908262106Search in Google Scholar PubMed PubMed Central
[20] C. J. Pickard and R. J. Needs. Ab Initio Random Structure Searching. J. Phys.: Condens. Matter 23, 2011, 053201.10.1088/0953-8984/23/5/053201Search in Google Scholar PubMed
[21] V. V. Struzhkin, D. Y. Kim, E. Stavrou, T.Muramatsu, H.Mao, C. J. Pickard, R. J. Needs, V. B. Prakapenka, and A. F. Goncharov. Synthesis of SodiumPolyhydrides at High Pressures. Nat. Commun. 7, 2016, 12267.10.1038/ncomms12267Search in Google Scholar PubMed PubMed Central
[22] H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma. Superconductive Sodalite-Like Clathrate CalciumHydride at High Pressures. Proc. Natl. Acad. Sci. USA 109, 2012, 6463-6466.10.1073/pnas.1118168109Search in Google Scholar PubMed PubMed Central
[23] Y. Wang, H. Wang, J. S. Tse, T. Iitaka, and Y. Ma. Structural Morphologies of High-Pressure Polymorphs of StrontiumHydrides. Phys. Chem. Chem. Phys. 17, 2015, 19379-19385.10.1039/C5CP01510CSearch in Google Scholar PubMed
[24] Y. Xie, Q. Li, A. R. Oganov, and H. Wang. Superconductivity of Lithium-Doped Hydrogen Under Pressure. Acta Cryst. C 70, 2014, 104-111.10.1107/S2053229613028337Search in Google Scholar PubMed
[25] D. Zhou, X. Jin, X. Meng, G. Bao, Y. Ma, B. Liu, and T. Cui. Ab Initio Study Revealing a Layered Structure in Hydrogen-Rich KH6 Under High Pressure. Phys. Rev. B 86, 2012, 014118 (1-7).10.1103/PhysRevB.86.014118Search in Google Scholar
[26] P. Baettig and E. Zurek. Pressure-Stabilized Sodium Polyhydrides: NaHn (n > 1). Phys. Rev. Lett. 106, 2011, 237002 (1-4).10.1103/PhysRevLett.106.237002Search in Google Scholar PubMed
[27] J. Hooper and E. Zurek. RubidiumPolyhydrides Under Pressure: Emergence of the Linear H−3 Species. Chem-Eur. J. 18, 2012, 5013-5021.10.1002/chem.201103205Search in Google Scholar PubMed
[28] J. Hooper and E. Zurek. High Pressure Potassium Polyhydrides: A Chemical Perspective. J. Phys. Chem. C 116, 2012, 13322-13328.10.1021/jp303024hSearch in Google Scholar
[29] A. Shamp, J. Hooper, and E. Zurek. Compressed Cesium Polyhydrides: Cs+ Sublattices and H−3 Three-Connected Nets. Inorg. Chem. 51, 2012, 9333-9342. 10.1021/ic301045vSearch in Google Scholar PubMed
[30] D. C. Lonie, J. Hooper, B. Altintas, and E. Zurek. Metallization of Magnesium Polyhydrides Under Pressure. Phys. Rev. B 87, 2013, 054107 (1-8).10.1103/PhysRevB.87.054107Search in Google Scholar
[31] J. Hooper, B. Altintas, A. Shamp, and E. Zurek. Polyhydrides of the Alkaline Earth Metals: A Look at the Extremes Under Pressure. J. Phys. Chem. C 117, 2013, 2982-2992.10.1021/jp311571nSearch in Google Scholar
[32] J. Hooper, T. Terpstra, A. Shamp, and E. Zurek. Composition and Constitution of Compressed Strontium Polyhydrides. J. Phys. Chem. C 118, 2014, 6433-6447.10.1021/jp4125342Search in Google Scholar
[33] (E. Zurek. Hydrides of the Alkali Metals and Alkaline Earth Metals Under Pressure. Comments Inorg. Chem., Submitted for Publication.)Search in Google Scholar
[34] X. Feng, J. Zhang, G. Gao, H. Liu, and H. Wang. Compressed Sodalite-Like MgH6 as a Potential High-Temperature Superconductor. RSC Adv. 5, 2015, 59292-59296.10.1039/C5RA11459DSearch in Google Scholar
[35] A. Shamp and E. Zurek. Superconducting High-Pressure Phases Composed of Hydrogen and Iodine. J. Phys. Chem. Lett. 6, 2015, 4067-4072.10.1021/acs.jpclett.5b01839Search in Google Scholar PubMed
[36] D. Duan, F. Tian, Y. Liu, X. Huang, D. Li, H. Yu, Y. Ma, B. Liu, and T. Cui. Enchancement of Tc in the Atomic Phase of Iodine-Doped Hydrogen at High Pressures. Phys. Chem. Chem. Phys 17, 2015, 32335-32340.10.1039/C5CP05218ASearch in Google Scholar PubMed
[37] C. Pépin, P. Loubeyre, F. Occelli, and P. Dumas. Synthesis of Lithium Polyhydrides Above 130 GPa at 300 K. Proc. Natl. Acad. Sci. 112, 2015, 7673-7676.10.1073/pnas.1507508112Search in Google Scholar PubMed PubMed Central
[38] A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin. Conventional Superconductivity at 203 Kelvin at High Pressures in the Sulfur Hydride System. Nature 525, 2015, 73-76.10.1038/nature14964Search in Google Scholar PubMed
[39] A. P. Drozdov, M. I. Eremets, and I. A Troyan. Superconductivity Above 100 K in PH3 at High Pressures. arXiv:1508.06224.Search in Google Scholar
[40] D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui. Pressure-Induced Metallization of Dense (H2S)2H2 with High-Tc Superconductivity. Sci. Rep. 4, 2014, 6968 (1-6).10.1038/srep06968Search in Google Scholar PubMed PubMed Central
[41] Y. Li, L. Wang, H. Liu, Y. Zhang, J. Hao, C. J. Pickard, J. R. Nelson, R. J. Needs, W. Li, Y. Huang, I. Errea, M. Calandra, F. Mauri, and Y.Ma. Dissociation Products and Structures of Solid H2S at Strong Compression. Phys. Rev. B 93, 2016, 020103.10.1103/PhysRevB.93.020103Search in Google Scholar
[42] J. A. Flores-Livas, A. Sanna, and E. K. U. Gross. High Temperature Superconductivity in Sulfur and Selenium Hydrides at High Pressure. Eur. Phys. J. B 89, 2016, 63.10.1140/epjb/e2016-70020-0Search in Google Scholar
[43] D. A. Papaconstantopoulos, B. M. Klein, M. J. Mehl, and W. E. Pickett. Cubic H3S Around 200 GPa: An Atomic Hydrogen Superconductor Stabilized by Sulfur. Phys. Rev. B 91, 2015, 184511.10.1103/PhysRevB.91.184511Search in Google Scholar
[44] N. Bernstein, C. S. Hellberg, M. D. Johannes, I. I.Mazin, and M. J. Mehl. What Superconducts in Sulfur Hydrides Under Pressure and Why? Phys. Rev. B 91, 2015, 060511.10.1103/PhysRevB.91.060511Search in Google Scholar
[45] D. Duan, X. Huang, F. Tian, D. Li, H. Yu, Y. Liu, Y. Ma, B. Liu, and T. Cui. Pressure-Induced Decomposition of Solid Hydrogen Sulfide. Phys. Rev. B 91, 2015, 180502.10.1103/PhysRevB.91.180502Search in Google Scholar
[46] I. Errea, M. Calandra, C. J. Pickard, J. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri. High-Pressure Hydrogen Sulfide from First-Principles: A Strongly Anharmonic Phonon- Mediated Superconductor. Phys. Rev. Lett. 114, 2015, 157004 (1-5).10.1103/PhysRevLett.114.157004Search in Google Scholar PubMed
[47] R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, and R. Arita. First-Principles Study of the Pressure and Crystal-Structure Dependences of the Superconducting Transition Temperature in Compressed Sulfur Hydrides. Phys. Rev. B 91, 2015, 224513.10.1103/PhysRevB.91.224513Search in Google Scholar
[48] I. Errea, M. Calandra, C. J. Pickard, J. R. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri. Quantum Hydrogen-Bond Symmetrization in the Superconducting Hydrogen Sulfide System. Nature 532, 2016, 81-84.10.1038/nature17175Search in Google Scholar PubMed
[49] Y. Quan and W. E. Pickett. Van Hove Singularities and Spectral Smearing in High-Temperature Superconducting H3S. Phys. Rev. B 93, 2016, 104526.10.1103/PhysRevB.93.104526Search in Google Scholar
[50] W. Sano, T. Koretsune, T. Tadano, R. Akashi, and R. Arita. Effect of Van Hove Singularities on High-Tc Superconductivity in H3S. Phys. Rev. B 93, 2016, 094525.10.1103/PhysRevB.93.094525Search in Google Scholar
[51] L. Ortenzi, E. Cappelluti, and L. Pietronero. Band Structure and Electron-Phonon Coupling in H3S: A Tight-Binding Model. Phys. Rev. B 94, 2016, 064507.10.1103/PhysRevB.94.064507Search in Google Scholar
[52] L. P. Gorkov and V. Z. Kresin. Pressure and High-Tc Superconductivity in Sulfur Hydrides. Sci. Rep. 6, 2016, 25608.10.1038/srep25608Search in Google Scholar PubMed PubMed Central
[53] A. F. Goncharov, S. S. Lobanov, I. Kruglov, X. Zhao, X. Chen, A. R. Oganov, Z. Konopkova, and V. B. Prakapenka. Hydrogen Sulfide at High Pressure: Change in Stoichiometry. Phys. Rev. B 93, 2016, 174105.10.1103/PhysRevB.93.174105Search in Google Scholar
[54] A. Bianconi, and T. Jarlborg. Superconductivity Above the Lowest Earth Temperature in Pressurized Sulfur Hydride. EPL 112, 2015, 37001.10.1209/0295-5075/112/37001Search in Google Scholar
[55] T. Jarlborg, and A. Bianconi. Breadown of the Migdal Approximation at Lifshitz Transitions with Giant Zero-Point Motion in the H3S Superconductor. Sci. Rep. 6, 2016, 24816.10.1038/srep24816Search in Google Scholar PubMed PubMed Central
[56] M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao, and Y. Ohishi. Crystal Structure of the Superconducting Phase of Sulfur Hydride. Nat. Phys. 12, 2016, 835-838.10.1038/nphys3760Search in Google Scholar PubMed PubMed Central
[57] A. Shamp, T. Terpstra, T. Bi, Z. Falls, P. Avery, and E. Zurek. Decomposition Products of Phosphine Under Pressure: PH2 Stable and Superconducting? J. Am. Chem. Soc. 138, 2016, 1884-1892.10.1021/jacs.5b10180Search in Google Scholar PubMed
[58] J. A. Flores-Livas, M. Amsler, C. Heil, A. Sanna, L. Boeri, G. Profeta, C. Wolverton, S. Goedecker, and E. K. U. Gross. Superconductivity in Metastable Phases of Phosphorus-Hydride Compounds Under High Pressure. Phys. Rev. B 93, 2016, 020508(R) 1-6.10.1103/PhysRevB.93.020508Search in Google Scholar
[59] H. Liu, Y. Li, G. Gao, J. S. Tse, and I. I. Naumov. Crystal Structure and Superconductivity of PH3 at High Pressures. J. Phys. Chem. C 120, 2016, 3458-3461.10.1021/acs.jpcc.5b12009Search in Google Scholar
[60] M. Ayouz, O. Dulieu, R. Guerout, J. Robert, and V. Kokoouline. Potential Energy and Dipole Moment Surfaces of H−3 Molecule. J. Chem. Phys. 132, 2010, 194309 (1-11).10.1063/1.3424847Search in Google Scholar PubMed
[61] Y. Li, J. Hao, H. Liu, J. S. Tse, Y. Wang, and Y. Ma. Pressure- Stabilized Superconductive Yttrium Hydrides. Sci. Rep. 5, 2015, 9948.Search in Google Scholar
[62] L. Zhang, Y. Wang, X. Zhang, and Y. Ma. High-Pressure Phase Transitions of Solid HF, HCl and HBr: An Ab Initio Evolutionary Study. Phys. Rev. B 82, 2010, 014108 (1-8).10.1103/PhysRevB.82.014108Search in Google Scholar
[63] J. V. Straaten and I. F. Silvera. Observation of Metal-Insulator and Metal-Metal Transitions in Hydrogen Iodide Under Pressure. Phys. Rev. Lett 57, 1986, 766-770.10.1103/PhysRevLett.57.766Search in Google Scholar PubMed
[64] B. M. Riggleman and H. G. Drickamer. Approach to the Metallic State as Obtained from Optical and Electrical Measurments. J. Chem. Phys. 38, 1963, 2721.10.1063/1.1733579Search in Google Scholar
[65] T. Kenichi, S. Kyoko, F. Hiroshi, and O. Mitsuko. Modulated Structure of Solid Iodine During Its Molecular Dissociation Under High Pressure. Nature 423, 2003, 971-974.10.1038/nature01724Search in Google Scholar PubMed
[66] P. B. Allen and R. C. Dynes. Transition Temperature of Strong- Coupled Superconductors Reanalyzed. Phys. Rev. B 12, 1975, 905-922.10.1103/PhysRevB.12.905Search in Google Scholar
© 2017
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.