Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access July 5, 2017

Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities

Yun-Han Lee , Guanjun Tan , Tao Zhan , Yishi Weng , Guigeng Liu , Fangwang Gou , Fenglin Peng , Nelson V. Tabiryan , Sebastian Gauza and Shin-Tson Wu EMAIL logo

Abstract

In this review paper,we report recent progress on Pancharatnam-Berry (PB) phase optical elements, such as lens, grating, and deflector. PB lenses exhibit a fast switching time between two or more focal lengths with large diopter change and aperture size, which is particularly attractive for addressing the accommodation mismatch in head-mounted display devices. On the other hand, PB gratings and deflectors offer a large-angle beam deflection with wide acceptance cone and high efficiency, as compared to conventional volume gratings. Such merits provide great advantages for waveguide-coupling augmented reality headsets. Moreover, the thickness of PB optical elements is only a few micrometers, thus they can be conveniently integrated into modern wearable display systems.

References

[1] D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1-10 (2013).10.1145/2508363.2508366Search in Google Scholar

[2] H. S. Park, R. Hoskinson, H. Abdollahi, and B. Stoeber, "Compact near-eye display system using a superlens-based microlens array magnifier," Opt. Express 23(24), 30618-30633 (2015).10.1364/OE.23.030618Search in Google Scholar PubMed

[3] C.-K. Lee, S. Moon, S. Lee, D. Yoo, J.-Y. Hong, and B. Lee, "Compact three-dimensional head-mounted display system with Savart plate," Opt. Express 24(17), 19531-19544 (2016).10.1364/OE.24.019531Search in Google Scholar PubMed

[4] F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).Search in Google Scholar

[5] S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35(4), 60 (2016).Search in Google Scholar

[6] S. Liu and H. Hua, “A systematic method for designing depthfused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562-11573 (2010).10.1364/OE.18.011562Search in Google Scholar PubMed

[7] S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19(21), 20940-20952 (2011).10.1364/OE.19.020940Search in Google Scholar PubMed PubMed Central

[8] H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).10.1002/9781118270080Search in Google Scholar

[9] S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19(21), 20940-20952 (2011).10.1364/OE.19.020940Search in Google Scholar

[10] Y. H. Lee, F. Peng, and S.T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668-1675 (2016).10.1364/OE.24.001668Search in Google Scholar PubMed

[11] S. Liu and H. Hua, “A systematic method for designing depthfused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562-11573 (2010).10.1364/OE.18.011562Search in Google Scholar

[12] B. T. Schowengerdt and E. J. Seibel, “True 3-D scanned voxel displays using single or multiple light sources,” J. Soc. Inf. Disp. 14(2), 135 (2006).10.1889/1.2176115Search in Google Scholar

[13] S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).10.1063/1.2716213Search in Google Scholar

[14] T. Rasmussen, “Overview of high-efficiency transmission gratings for molecular spectroscopy,” Spectroscopy 29(4), 32-39 (2014).Search in Google Scholar

[15] F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol®HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).Search in Google Scholar

[16] E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics,” Appl. Phys. Lett. 82(3), 328-330 (2003).10.1063/1.1539300Search in Google Scholar

[17] S. Pancharatnam, “Generalized theory of interference and its applications,” Proc. Indian Acad. Sci., Sect. A 44(5), 247-262 (1956).10.1007/BF03046050Search in Google Scholar

[18] M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London, Ser. A 392(1802), 45-57 (1984).10.1098/rspa.1984.0023Search in Google Scholar

[19] L. Marruccia, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).Search in Google Scholar

[20] Y. Ke, Y. Liu, J. Zhou, Y. Liu, H. Luo, and S. Wen, “Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens,” Appl. Phys. Lett. 108(10), 101102 (2016).10.1063/1.4943403Search in Google Scholar

[21] B. Piccirillo, M. Florinda P. L. Marrucci, and E, Santamato, “Flat polarization-controlled cylindrical lens based on the Pancharatnam-Berry geometric phase,” Eur. J. Phys. 38(3), 034007 (2017).10.1088/1361-6404/aa5e11Search in Google Scholar

[22] N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, "Thinwaveplate lenses of switchable focal length - new generation in optics," Opt. Express 23(20), 25783-25794 (2015).10.1364/OE.23.025783Search in Google Scholar PubMed

[23] N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses: new generation in optics,” Proc. SPIE 9565, 956512 (2015).Search in Google Scholar

[24] A. M. W. Tam, F. Fan, H. S. Chen, D. Tao, V. G. Chigrinov, H. S. Kwok, and Y. S. Lin, “Continuous nanoscale patterned photoalignment for thin film Pancharatnam-Berry phase diffractive lens,” SID Int. Symp. Digest Tech. Papers 46(S1), 8 (2015).10.1002/sdtp.10518Search in Google Scholar

[25] K. Gao, H. H. Cheng, A. K. Bhowmik, and P. J. Bos, “Thin-film Pancharatnam lens with low f-number and high quality,” Opt. Express 23(20), 26086-26094 (2015).10.1364/OE.23.026086Search in Google Scholar PubMed

[26] N. Tabiryan, D. Roberts, E. Serabyn, D. Steeves, and B. Kimball, “Superlens in the skies: liquid-crystal-polymer technology for telescopes,” (SPIE Newsroom 2016), http://spie.org/newsroom/6317-superlens-in-the-skies-liquid-crystalpolymer-technology-for-telescopes?ArticleID=x117044.10.1117/2.1201601.006317Search in Google Scholar

[27] N. V. Tabiryan, S. V. Serak, S. R. Nersisyan, D. E. Roberts, B. Ya. Zeldovich, D. M. Steeves, and B. R. Kimball, “Broadband waveplate lenses,” Opt. Express 24(7) 7091-7102 (2016).10.1364/OE.24.007091Search in Google Scholar PubMed

[28] L. De Sio, D. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. Steeves, B. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. Express, 24(16), 18297-18306, (2016).10.1364/OE.24.018297Search in Google Scholar PubMed

[29] N. Tabiryan, D. Roberts, D. Steeves, and B. Kimball, “4G Optics: New technology extends limits to the extremes,” Photonics Spectra 51(3), 46-50 (2017).Search in Google Scholar

[30] C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).10.1063/1.2355456Search in Google Scholar

[31] H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31 (15), 2248-2250 (2006).10.1364/OL.31.002248Search in Google Scholar PubMed

[32] S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater., 18(1), 1-47 (2009).10.1142/S0218863509004555Search in Google Scholar

[33] N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41-45 (2010).Search in Google Scholar

[34] K. Gao, C. McGinty, H. Payson, S. Berry, J. Vornehm, V. Finnemeyer, B. Roberts, and P. Bos, "High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design," Opt. Express 25(6), 6283-6293 (2017).10.1364/OE.25.006283Search in Google Scholar PubMed

[35] Y. Weng, D. Xu, Y. Zhang, X. Li, and S.-T.Wu, "Polarization volume grating with high efficiency and large diffraction angle," Opt. Express 24(16), 17746-17759 (2016).10.1364/OE.24.017746Search in Google Scholar PubMed

[36] J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958-964 (2015).10.1364/OPTICA.2.000958Search in Google Scholar

[37] D. K. Yang and S. T. Wu, Fundamental of Liquid Crystal Devices (Wiley, 2006).10.1002/0470032030Search in Google Scholar

[38] S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U (2010).10.1117/12.862463Search in Google Scholar

[39] H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S.-T. Wu, "Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate," Opt. Express 24(7), 7287-7298 (2016).10.1364/OE.24.007287Search in Google Scholar PubMed

[40] R. Hyde and S. Dixit, “A giant leap for space telescopes,” Lawrence Livermore National Laboratory Science & Technology Review, pp. 12-18 (March 2003).Search in Google Scholar

[41] A. Chao, K. T. Huang, C. W. Tsai, Y. W. Hung, H. F. Cheng, W. Yeh, C. H. Yu, and H. H.Wu, “The fastest response TN-type TFT LCD of the world likes OCB level,” SID Int. Symp. Digest Tech. Papers 38(1), 603-606 (2007).10.1889/1.2785374Search in Google Scholar

[42] A. Srivastava, V. Chigrinov, and H. S. Kwok, "Ferroelectric liquid crystals: Excellent tool for modern displays and photonics," J. Soc. Inf. Disp. 23(6), 253-272 (2015).Search in Google Scholar

[43] S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A. 33(2), 1270-1274 (1986).10.1103/PhysRevA.33.1270Search in Google Scholar

[44] C. Oh and M. J. Escuti, “Achromatic di_raction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287-2289 (2008).10.1364/OL.33.002287Search in Google Scholar

[45] H. Cheng, A. K. Bhowmik, and P. J. Bos, “Analysis of a dual-twist Pancharatnam phase device with ultrahigh-efficiency large angle optical beam steering,” Appl. Opt. 54(34), 10035-10043 (2015).10.1364/AO.54.010035Search in Google Scholar PubMed

[46] H. Cheng, A. K. Bhowmik, and P. J. Bos, “Concept for a transmissive, large angle, light steering device with high efficiency,” Opt. Lett. 40(9), 2080-2083 (2015).10.1364/OL.40.002080Search in Google Scholar PubMed

[47] J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389-392 (2016).10.1038/nphoton.2016.66Search in Google Scholar

Received: 2017-6-1
Accepted: 2017-6-5
Published Online: 2017-7-5
Published in Print: 2017-6-27

© 2017

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 9.12.2022 from https://www.degruyter.com/document/doi/10.1515/odps-2017-0010/html
Scroll Up Arrow