Skip to content
Accessible Unlicensed Requires Authentication Published by De Gruyter October 17, 2016

Thulium-doped fibre broadband source for spectral region near 2 micrometers

M. Písařík, P. Peterka, J. Aubrecht, J. Cajzl, A. Benda, D. Mareš, F. Todorov, O. Podrazký, P. Honzátko and I. Kašík
From the journal Opto-Electronics Review

Abstract

We demonstrated two methods of increasing the bandwidth of a broadband light source based on amplified spontaneous emission in thulium-doped fibres. Firstly, we have shown by means of a comprehensive numerical model that the full-width at half maximum of the thulium-doped fibre based broadband source can be more than doubled by using specially tailored spectral filter placed in front of the mirror in a double-pass configuration of the amplified spontaneous emission source. The broadening can be achieved with only a small expense of the output power. Secondly, we report results of the experimental thulium-doped fibre broadband source, including fibre characteristics and performance of the thulium-doped fibre in a ring laser setup. The spectrum broadening was achieved by balancing the backward amplified spontaneous emission with back-reflected forward emission.

Acknowledgements

The authors thank Simon Hutchinson for careful reading of the manuscripts and his helpful comments. The authors acknowledge the company SQS Fibre Optics, Czech Republic, for cooperation in the development of fused fibre components for the spectral region around 2 μm. The research was supported by the Agency for Healthcare Research of the Czech Republic, under project No. 15-33459A.

References

1 B. Jean and T. Bende, “Mid-IR laser applications in medicine”, in: Solid-State Mid-Infrared Laser Sources. pp. 530–565, Springer-Verlag, Berlin, 2003.Search in Google Scholar

2 M. Grasso, “Experience with the holmium laser as an endoscopic lithotrite”, Urology 48, 199–206 (1996).Search in Google Scholar

3 A. Sciarra, M. von Heland, F. Minisola, S. Salciccia, S. Cattarino, and V. Gentile, “Thulium laser supported nephron sparing surgery for renal cell carcinoma”, J. Urol. 190, 698–701 (2013).Search in Google Scholar

4 Z.Q. Zhao and P.W. Fairchild, “Dependence of light transmission through human skin on incident beam diameter at different wavelengths”, in Laser-Tissue Interaction IX, J. Lotz; S.L. Jacques, Editors, Proc. SPIE 3254, 354–360 (1998).Search in Google Scholar

5 A.Z. Thomas, L. Smyth, D. Hennessey, F. O’Kelly, D. Moran, and T.H. Lynch, “Zero ischemia laparoscopic partial thulium laser nephrectomy”, J. Endourol. 27, 1366–1370 (2013).Search in Google Scholar

6 C.L. Tsai, J.C. Chen, and W.J. Wang, “Near-infrared absorption property of biological soft tissue constituents”, J. Med. Biol. Eng. 21, 7–14 (2001).Search in Google Scholar

7 J. Kwiatkowski, “Highly efficient high power CW and Q-switched Ho:YLF laser”, Opto-Electron. Rev. 23, 165–171 (2015).Search in Google Scholar

8 J. Sotor, M. Pawliszewska, G. Sobon, P. Kaczmarek, A. Przewolka, I. Pasternak, J. Cajzl, P. Peterka, P. Honzatko, I. Kasik, W. Strupinski, and K. Abramski, “All-fibre Ho-doped mode-locked oscillator based on graphene saturable absorber”, Opt. Lett., 41, 2592–2595 (2016).Search in Google Scholar

9 L. Nagli, O. Gayer, and A. Katzir, “Middle-infrared luminescence of praseodymium ions in silver halide crystals and fibres”, Opt. Lett. 30, 1831–1833 (2005).Search in Google Scholar

10 D. Sliwinska, P. Kaczmarek, and K.M. Abramski, “Pump and signal power combiners for high-power fibre amplifier applications”, Photonics Lett. of Poland 7, 29–31 (2015).Search in Google Scholar

11 D. Stachowiak, P. Kaczmarek, and K. M. Abramski, “High-power pump combiners for Tm-doped fibre lasers”, Opto-Electron. Rev. 23, 259–267 (2015).Search in Google Scholar

12 P. Koška, Y. Baravets, P. Peterka, J. Bohata, and M. Pisarik, “Mode-field adapter for tapered-fibre-bundle signal and pump combiners”, Appl. Opt. 54, 751–756 (2015).Search in Google Scholar

13 J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Maze, “High power supercontinuum generation in fluoride fibres pumped by 2 μm pulses”, IEEE Photonics Technol. Lett. 26, 150–153 (2014).Search in Google Scholar

14 Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J.P. Wooler, N.V. Wheeler, A.M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M.N. Petrovich, S. Alam, D.J. Richardson, and R. Slavík, “High-Capacity Directly Modulated Optical Transmitter for 2-μm Spectral Region”, J. Lightwave Technol. 33, 1373–1379 (2015).Search in Google Scholar

15 P. Honzatko, Y. Baravets, F. Todorov, P. Peterka, and M. Becker, “Coherently combined 20 W at 2000 nm from a pair of thulium-doped fibre lasers”, Las. Phys. Lett. 10, 095104 (5pp) (2013).Search in Google Scholar

16 P. Peterka, P. Honzátko, I. Kašík, O. Podrazký, F. Todorov, J. Cajzl, P. Koška, Y. Baravets, J. Aubrecht, and J. Mrázek, “Thulium-doped fibres and fibre-optic components for fibre lasers at around 2 μm”, Fine Mechanics and Optics 60, 174–177 (2015).Search in Google Scholar

17 I. Kašík, P. Honzátko, P. Peterka, J. Mrázek, O. Podrazký, J. Aubrecht, J. Proboštová, J. Cajzl, and F. Todorov, “Special optical fibres – heart of thulium and holmium fibre lasers and amplifiers”, Fine Mechanics and Optics 60, 4–7 (2015). (IN CZECH)Search in Google Scholar

18 M. Písarík, P. Peterka, S. Zvánovec, Y. Baravets, F. Todorov, I. Kašík, and P. Honzátko, “Fused fibre components for “eye-safe” spectral region around 2 μm”, Opt. Quant. Electron. 46, 603–611 (2014).Search in Google Scholar

19 A.B. Seddon, “ Mid-infrared (IR) – A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo”, Physica Status Solidi (B) 250, 1020–1027 (2013).Search in Google Scholar

20 K. Oh, A. Kilian, P.M. Weber, L. Reinhart, Q. Zhang, and T.F. Morse, “Broadband superfluorescent emission of the 3H43H6 transition in a Tm-doped multicomponent silicate fibre”, Opt. Lett. 19, 1131–1133 (1994).Search in Google Scholar

21 R.M. Percival, D. Szebesta, C.P. Seltzer, S.D. Perin, S.T. Davey, and M. Louka, “A 1.6-μm pumped 1.9-μm thulium-doped fluoride fibre laser and amplifier of very high efficiency”, IEEE J. Quantum Electron. 31, 489–493 (1995).Search in Google Scholar

22 A. Halder, M.C. Paul, S.W. Harun, S.M.M. Ali, N. Saidin, S.S.A. Damanhuri, H. Ahmad, S. Das, M. Pal, S.K. Bhadra, “1880-nm broadband ASE generation with bismuth-thulium co-doped fibre”, IEEE Photonics J. 4, 2176–2181 (2012).Search in Google Scholar

23 A. Halder, M.C. Paul, N.S. Shahabuddin, S.W. Harun, N. Saidin, S.S.A. Damanhuri, H. Ahmad, S. Das, M. Pal, S.K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double-clad ytterbium-sensitized thulium-doped fibre”, IEEE Photonics Journal 4, 14–18 (2012).Search in Google Scholar

24 J. Zmojda, D. Dorosz, M. Kochanowicz, and J. Dorosz, “Active glasses as the luminescent sources of radiation for sensor applications”, Bull. Pol. Acad. Sci.-Tech. Sci. 62, 393–397 (2014).Search in Google Scholar

25 J. Zmojda, M. Kochanowicz, P. Miluski, J. Dorosz, J. Pisarska, W.A. Pisarski, and D. Dorosz, “Investigation of up-conversion luminescence in antimony–germanate double-clad two cores optical fibre co-doped with Yb3+/Tm3+ and Yb3+/Ho3+ ions”, J. Luminescence 170, 795–800 (2016).Search in Google Scholar

26 P. Honzatko, Y. Baravets, I. Kasik, and O. Podrazky, “Wideband thulium–holmium-doped fibre source with combined forward and backward amplified spontaneous emission at 1600–2300 nm spectral band”, Opt. Lett. 39, 3650–3653 (2014).Search in Google Scholar

27 J.M. Sousa, M. Melo, L.A. Ferreira, J.R. Salcedo, and M.O. Berendt, “Product design issues relating to rare-earth doped fibre ring lasers and superfluorescence sources”, Proc. SPIE 6102, 610223 (2006).Search in Google Scholar

28 I. Trifanov, P. Caldas, L. Neagu, R. Romero, M.O. Berendt, J.A.R. Salcedo, A.G. Podoleanu, and A.B. Lobo Ribeiro, “Combined Neodymium – Ytterbium-doped ASE fibre-optic source for optical coherence tomography applications”, IEEE Photonics Technol. Lett. 23, 21–23 (2011).Search in Google Scholar

29 P. Peterka, F. Todorov, I. Kasik, V. Matejec, O. Podrazký, L. Sasek, G. Mallmann, and R. Schmitt, “Wideband and high-power light sources for in-line interferometric diagnostics of laser structuring systems”, Proc. SPIE 8697, 869718 (2012).Search in Google Scholar

30 Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 μm mode-locked fibre lasers [Invited]”, Proc. SPIE 8237, 82371N (2012).Search in Google Scholar

31 Y.H. Tsang, A.F. El-Sherif, and T.A. King, “ Broadband amplified spontaneous emission fibre source near 2 μm using resonant in-band pumping”, J. Modern Optics 52, 109–118 (2005).Search in Google Scholar

32 Y.H. Tsang, T.A. King, D.-K. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm”, J. Modern Optics 53, 991–1001 (2006).Search in Google Scholar

33 D.Y. Shen, L. Pearson, P. Wang, J.K. Sahu, and W.A. Clarkson, “Broadband Tm-doped superfluorescent fibre source with 11 W single-ended output power”, Opt. Express 16, 11021–11026 (2008).Search in Google Scholar

34 J. Liu and P. Wang, “High-power broadband Thulium-doped all-fibre superfluorescent source at 2 μm”, IEEE Photonics Technol. Lett. 25, 242–245 (2013).Search in Google Scholar

35 G.-Y. Yu, J. Chang, Q.-P. Wang, X.-Y. Zhang, Z. Liu, Q.-J. Huang, “A theoretical model of thulium-doped silica fibre’s ASE in the 1900 nm waveband”, Optoelectron. Lett. 6, 45–47 (2010).Search in Google Scholar

36 M. Gorjan, T. North, and M. Rochette, “Model of the amplified spontaneous emission generation in thulium-doped silica fibres”, J. Opt. Soc. Am. B 29, 2886–2890 (2012).Search in Google Scholar

37 P. Peterka, I. Kašík, A. Dhar, B. Dussardier, and W. Blanc, “Theoretical modelling of fibre laser at 810 nm based on thulium-doped silica fibres with enhanced 3H4 level lifetime”, Opt. Express 19, 2773–2781 (2011).Search in Google Scholar

38 P. Peterka, I. Kašík, V. Matejec, W. Blanc, B. Faure, B. Dussardier, G. Monnom and V. Kubecek, “Thulium-doped silica-based optical fibres for cladding-pumped fibre amplifiers”, Opt. Mat. 30, 174–176 (2007).Search in Google Scholar

39 P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers”, Opt. Quant. Electron. 36, 201–212 (2004).Search in Google Scholar

40 J. Chen, X. Zhu, and W Sibbett, “Rate-equation studies of erbium-doped fibre lasers with common pump and laser energy bands”, J. Opt. Soc. Am. B 9, 1876–1882 (1992).Search in Google Scholar

41 O. Podrazký, I. Kašík, M. Pospíšilová, and V.Matμjec, “Use of alumina nanoparticles for preparation of erbium-doped fibres”, IEEE Proc. 20th Annual Meeting of the IEE LEOS, pp. 246–247, Lake Buena Vista, Florida, 2007.Search in Google Scholar

42 D. Boivin, T. Föhn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibres using MCVD nanoparticle doping process”, Proc. SPIE 7580, 75802B, (2010).Search in Google Scholar

43 W. Blanc and B. Dussardier, “Formation and applications of nanoparticles in silica optical fibres”, J. Optics (India) 45, 247–254 (2016).Search in Google Scholar

44 I. Kasik, O. Podrazky, J. Mrazek, J. Cajzl, J. Aubrecht, J. Probostova, P. Peterka, P. Honzatko, and A. Dhar, “Erbium and Al2O3 nanocrystals-doped silica optical fibres”, Bull. Pol. Acad. Sci.-Tech. Sci. 62, 641–646 (2014).Search in Google Scholar

45 R. Paschotta, J. Nilsson, A.C. Tropper, and D.C. Hanna, “Efficient superfluorescent light sources with broad bandwidth,” IEEE J. of Selected Topics in Quantum Electronics 3, 1097–1099 (1997).Search in Google Scholar

46 P. Peterka, J. Maria, B. Dussardier, R. Slavik, P. Honzatko, and V. Kubecek, “Long-period fibre grating as wavelength selective element in double-clad Yb-doped fibre-ring lasers”, Laser Phys. Lett. 6, 732–736 (2009).Search in Google Scholar

47 P. Koška, P. Peterka, J. Aubrecht, O. Podrazký, F. Todorov, M. Becker, Y. Baravets, P. Honzátko, and I. Kašík, “Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibres”, Opt. Express 24, 102–107 (2016).Search in Google Scholar

Published Online: 2016-10-17
Published in Print: 2016-12-1

© 2016 SEP, Warsaw