Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access August 1, 2018

Impact of climate change on the potato crop and biodiversity in its center of origin

  • Roberto Quiroz EMAIL logo , David A. Ramírez , Jürgen Kroschel , Jorge Andrade-Piedra , Carolina Barreda , Bruno Condori , Victor Mares , Philippe Monneveux and Willmer Perez
From the journal Open Agriculture


The Andean region is the most important center of potato diversity in the world. The global warming trend which has taken place since the 1950s, that is 2-3 times the reported global warming and the continuous presence of extreme events makes this region a live laboratory to study the impact of climate change. In this review, we first present the current knowledge on climate change in the Andes, as compared to changes in other mountain areas, and the globe in general. Then, the review describes the ecophysiological strategies to cope and adapt to changes in atmospheric CO2 levels, temperature and soil water availability. As climate change also has a significant effect on the magnitude and frequency of the incidence of pests and diseases, the current knowledge of the dynamics of vectors in the Andean region is discussed. The use of modeling techniques to describe changes in the range expansion and number of insect pest generations per year as affected by increases in temperature is also presented. Finally, the review deals with the use of crop modeling to analyze the likely impact of projected climate scenarios on potato yield and tuber initiation.


Alcazar J., Cisneros F., Taxonomy and bionomics of the Andean potato weevil complex: Premnotrypes spp. and related genera. In: International Potato Center (CIP), Program Report 1997-1998, CIP, 1999Search in Google Scholar

Barnaby J.Y., Fleisher D., Reddy V., Sicher R., Combined effects of CO2 enrichment, diurnal light levels and water stress on foliar metabolites of potato plants grown in naturally sunlit controlled environment chambers, Physiol. Plant., 2015, 153, 243-25210.1111/ppl.12238Search in Google Scholar PubMed

Boland G.J., Melzer M.S., Hopkin A., Higgins V., Nassuth A., Climate change and plant diseases in Ontario, Can. J. Plant Pathol., 2004, 26, 335-350 Burton W.G., Challenges for stress physiology in potato, Am. Potato J., 1981, 58, 3-14.10.1080/07060660409507151Search in Google Scholar

Carvalho L.V., Jones C., Posadas A.N., Quiroz R., Bookhagen B.M.V., Liebmann B., Precipitation characteristics of the South American Monsoon System derived from multiple data sets, J. Clim., 2012, 25(13), 4600-462010.1175/JCLI-D-11-00335.1Search in Google Scholar

Chakraborty S., Newton A.C., Climate change, plant diseases and food security: an overview. Plant Pathol., 2011, 60(1), 2-1410.1111/j.1365-3059.2010.02411.xSearch in Google Scholar

Condori B., Hijmans R.J., Quiroz R., Ledent J.-F., Quantifying the expression of potato genetic diversity in the high Andes through growth analysis and modeling, Field Crops Res., 2010, 119(1), 135-14410.1016/j.fcr.2010.07.003Search in Google Scholar

Condori B., Hijmans R.J., Quiroz R., Ledent J.-F., Managing potato biodiversity to cope with frost risk in the high Andes. Plos One, 2014, 119(1), 135-14410.1016/j.fcr.2010.07.003Search in Google Scholar

de Haan S., Nuñez J., Bonierbale M., Ghislain M., Multilevel Agrobiodiversity and Conservation of Andean Potatoes in Central Peru, Mt. Res. Dev., 2010, 30(3), 222-23110.1659/MRD-JOURNAL-D-10-00020.1Search in Google Scholar

Devaux A., Kromann P., Ortiz O., Potatoes for Sustainable Global Food Security, Potato Res., 2014, 57(3),185-19910.1007/s11540-014-9265-1Search in Google Scholar

Dillon M.E., Wang G., Huey R.B., Global metabolic impacts of recent climate warming. Nature, 2010, 467, 704-70610.1038/nature09407Search in Google Scholar PubMed

Duffaut L.A., Posadas A.N., Carbajal M., Quiroz R., Multifractal downscaling of rainfall using normalized difference vegetation index (NDVI) in the Andes plateau. PlosOne, 2017, 12(1), e016898210.1371/journal.pone.0168982Search in Google Scholar PubMed PubMed Central

FAOSTAT, Food and agriculture data, 2017, in Google Scholar

Finnan J.M., Donnelly A., Jones M.B., Burke J.I., The Effect of Elevated Levels of Carbon Dioxide on Potato Crops, J. Crop Improv., 2005, 13, 91-11110.1300/J411v13n01_06Search in Google Scholar

Fleisher D.H., Timlin D.J., Reddy V.R., Elevated carbon dioxide and water stress effects on potato canopy gas exchange, water use, and productivity. Agric. For. Meteorol., 2008a, 148, 1109-112210.1016/j.agrformet.2008.02.007Search in Google Scholar

Fleisher D.H., Timlin D.J., Reddy V.R., Interactive effects of carbon dioxide and water stress on potato canopy growth and development. Agron. J., 2008b, 100, 711-71910.2134/agronj2007.0188Search in Google Scholar

Fleisher D.H., Barnaby J., Sicher R., Resop J.P., Timlin D.J., Reddy V.R., Effects of elevated CO2 and cyclic drought on potato under varying radiation regimes, Agric. For. Meteorol., 2013, 171-172, 270-28010.1016/j.agrformet.2012.12.011Search in Google Scholar

Fleisher D.H., Condori B., Quiroz R., Alva A., Asseng S., Barreda C., et al., Potato Model Uncertainty Across Common Datasets and Varying Climate. Glob. Change Biol., 2016, 23(3), 1258-1281.10.1111/gcb.13411Search in Google Scholar

Forbes G. A., Lizarraga C., The impact of potato late blight management on poverty and hunger, 2010, in Google Scholar

Garreaud R.D., Vuille M., Clement A.C., The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr. Palaeoclimatol. Palaeoecol., 2003, 194(1-3), 5-2210.1016/S0031-0182(03)00269-4Search in Google Scholar

Garrett K.A., Dendy S.P., Frank E.E., Rouse M.N., Travers S.E., Climate change effects on plant disease: Genomes to ecosystems. Annu Rev Phytopathol, 2006, 44, 489-509.10.1146/annurev.phyto.44.070505.143420Search in Google Scholar PubMed

Giraldo D., Juarez H., Perez W.M., Trebejo I., Izarra W., Forbes G., Severity of the potato late blight (Phytophthora infestans) in agricultural areas of Peru associated with climate change (in Spanish), 2010, in Google Scholar

Govindasamy B., Duffy P.B., Coquard J., High-resolution simulations of global climate, part 2: effects of increased greenhouse cases. Clim. Dyn., 2003, 21, 391-40410.1007/s00382-003-0340-6Search in Google Scholar

Haverkort A.J., Verhagen A., Climate change and its repercussions for the potato supply chain. Potato Res., 2008, 51, 223-23710.1007/s11540-008-9107-0Search in Google Scholar

Haylock M.R., Peterson T.C., Alves L.M., Ambrizzi T., Anunciação Y.M.T., Baez J., et al., Trends in total and extreme South American rainfall in 1960-2000 and links with sea surface temperature, J. Clim., 2006, 19(8), 1490-151210.1175/JCLI3695.1Search in Google Scholar

Hijmans R.J., Forbes G.A., Walker T.S. Estimating the global severity of potato late blight with GIS-linked disease forecast models. Plant Pathol., 2000, 49, 697-70510.1046/j.1365-3059.2000.00511.xSearch in Google Scholar

Hijmans R.J., Global distribution of the potato crop. Am. J. Potato Res., 2001, 78(6), 403-41210.1007/BF02896371Search in Google Scholar

Hijmans R.J., The effect of climate change on global potato production, Am. J. Potato Res., 2003, 80(4), 271-28010.1007/BF02855363Search in Google Scholar

IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2013Search in Google Scholar

Jefferies R.A., Physiology of crop response to drought. In: Haverkort A.J., MacKerron D.K.L. (Eds.), Potato Ecology and Modeling of Crops under Conditions Limiting Growth, Wageningen Academic Publishers, The Netherlands, 199510.1007/978-94-011-0051-9_4Search in Google Scholar

Kapsa J.S., Important threats in potato production and integrated pathogen/pest management, Potato Res., 2008, 51, 385-40110.1007/s11540-008-9114-1Search in Google Scholar

Kimball B.A. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr. Opin. Plant Biol. 31, 36-4310.1016/j.pbi.2016.03.006Search in Google Scholar PubMed

Kroschel J., Mujica N., Alcazar J., Canedo V., Zegarra O., Developing Integrated Pest Management for Potato: Experiences and Lessons from Two Distinct Potato Production Systems of Peru. In: He Z., Larkin R., Honeycutt W. (eds) Sustainable Potato Production: Global Case Studies. Springer, Dordrecht, 2012Search in Google Scholar

Kroschel J., Sporleder M., Tonnang H.E.Z., Juarez H., Carhuapoma P., Gonzales J.C, Simon R., Predicting climate-changecaused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping, Agric. For. Meteorol., 2013, 170, 228-24110.1016/j.agrformet.2012.06.017Search in Google Scholar

Kroschel J., Schaub B., Biology and Ecology of Potato Tuber Moths as Major Pests of Potato, In: Giordanengo P., Vincent C., Alyokhin A., Insect Pests of Potato: Biology and Management, Elsevier Inc., 2012Search in Google Scholar

Kroschel J., Mujica, N., Carhuapoma P., Sporleder M., Pest Distribution and Risk Atlas for Africa- Potential global and regional distribution and abundance of agricultural and horticultural pests and associated biocontrol agents under current and future climates, International Potato Center (CIP), Lima, Peru, 2016Search in Google Scholar

Luck J., Spackman M., Freeman A., Trebicki P., Griffiths W., Finlay K., Chakraborty S., Climate change and diseases of food crops. Plant Pathol., 2011, 60,113-12110.1111/j.1365-3059.2010.02414.xSearch in Google Scholar

Lutaladio N., Castaldi L., Potato: The Hidden Treasure. J. Food Compos. Anal., 2009, 22, 491-49310.1016/j.jfca.2009.05.002Search in Google Scholar

Magan N., Medina A., Aldred D., Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest. Plant Pathol., 2011, 60, 150-6310.1111/j.1365-3059.2010.02412.xSearch in Google Scholar

Masters G., Norgrove, L., Climate change and invasive alien species. CABI Working Paper 1, 2010, in Google Scholar

Medici L.O., Reinert F., Carvalho D.F., Kozak M., Azevedo R.A., What about keeping plants well-watered? Environ. Exp. Bot., 2014, 99, 38-4210.1016/j.envexpbot.2013.10.019Search in Google Scholar

Mohr, K.I., Slayback D., Yager K., Characteristics of precipitation features and annual rainfall during the TRMM era in the central Andes, J. Clim., 2014, 27, 3982-400110.1175/JCLI-D-13-00592.1Search in Google Scholar

Monneveux P., Ramírez D.A., Pino M.T., Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals? Plant Sci., 2013, 205-206, 76-8610.1016/j.plantsci.2013.01.011Search in Google Scholar

Morin E., To know what we cannot know: Global mapping of minimal detectable absolute trends in annual precipitation. Water Resour. Res., 2011, 47(7), 1-9.10.1029/2010WR009798Search in Google Scholar

Mujica N., Ecological approaches to manage the leafminer fly Liriomyza huidobrensis (Blanchard) in potato-based agroecosystems of Peru. In: J Kroschel (Ed.), Tropical Agriculture 21, Advances in Crop Research 11, Margraf Publishers, Weikersheim, Germany, 2016Search in Google Scholar

Mujica N., Carhuapoma P., Kroschel J., Serpentine leafminer Liriomyza huidobrensis (Blanchard 1926). In: Kroschel J., Mujica N., Carhuapoma P., Sporleder M., (Eds.): Pest distribution and risk atlas for Africa: potential global and regional distribution and abundance of agricultural and horticultural pests and associated biocontrol agents under current and future climates. International Potato Center, Lima, Peru, 2016Search in Google Scholar

Newbery F., Qi A., Fitt B.D.L., Modelling impacts of climate change on arable crop diseases: progress, challenges and applications, Curr. Opin. Plant Biol. 2016, 32, 101-10910.1016/j.pbi.2016.07.002Search in Google Scholar PubMed

Olesen J. E., Bindi M., Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron., 2002, 16(4), 239-26210.1016/S1161-0301(02)00004-7Search in Google Scholar

Plessl M., Elstner E. F., Rennenberg H., Habermeyer J., Heiser I., Influence of elevated CO2 and ozone concentrations on late blight resistance and growth of potato plants. Environ. Exp. Bot., 2007, 60(3), 447-45710.1016/j.envexpbot.2007.01.003Search in Google Scholar

Quiroz R., Loayza H., Barreda C., Gavilán C., Posadas A., Ramírez D.A., Linking process-based potato models with light reflectance data: Does modeling complexity enhance yield prediction accuracy?, Eur. J. Agron., 2017, 82, 104-11210.1016/j.eja.2016.10.008Search in Google Scholar

Rabatel A., Francou B., Soruco, A., Gomez J, Cáceres B., Ceballos J.L., et al., Current state of glaciers in the tropical Andes: A multicentury perspective on glacier evolution and climate change, Cryosphere, 2013, 7, 81-10210.5194/tc-7-81-2013Search in Google Scholar

Ramírez D.A., Rolando J.L., Yactayo W., Monneveux P., Mares V., Quiroz R., Improving potato drought tolerance through the induction of long-term water stress memory. Plant Sci., 2015, 238, 26-3210.1016/j.plantsci.2015.05.016Search in Google Scholar PubMed

Raymundo R., Asseng S., Cammarano D., Quiroz R., Potato, sweet potato, and yam models for climate change: A review, Field Crop. Res., 2014, 166, 173-185.10.1016/j.fcr.2014.06.017Search in Google Scholar

Raymundo R., Asseng S., Prassad R., Kleinwechter U., Concha J., Condori B., et al., Performance of the SUBSTOR-potato model across contrasting growing conditions, Field Crop. Res., 2017, 202, 15, 57-7610.1016/j.fcr.2016.04.012Search in Google Scholar

Rolando J.L., Turin C., Ramírez D.A., Mares V., Monerris J., Quiroz R., Key ecosystem services and ecological intensification of agriculture in the tropical high-Andean Puna as affected by land-use and climate changes, Agric. Ecosyst. Environ., 2017, 236, 221-22310.1016/j.agee.2016.12.010Search in Google Scholar

Rosenzweig C., Jones J.W., Hatfield J.L., Ruane A.C., Boote K.J., Thorburn P., et al., The agricultural model Intercomparison and improvement project (AgMIP): protocols and pilot studies, Agric. For. Meteorol., 2013, 170, 166-18210.1016/j.agrformet.2012.09.011Search in Google Scholar

Schaub, B., Carhuapoma P., Kroschel J., Guatemalan potato tuber moth, Tecia solanivora (Povolny 1973), In: Kroschel J., Mujica N., Carhuapoma P., Sporleder M (Eds.), Pest Distribution and Risk Atlas for Africa: Potential global and regional distribution and abundance of agricultural and horticultural pests and associated biocontrol agents under current and future climates, International Potato Center, Lima, Peru, 2016Search in Google Scholar

Schauwecker S., et al., Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited, Global Planet. Change, 2014, 119, 85-9710.1016/j.gloplacha.2014.05.005Search in Google Scholar

Segnini A., Posadas A., Quiroz R., Milori D.M.B.P., Saab S.C., Martin Neto L., et al., Spectroscopic assessment of soil organic matter in wetlands from the high Andes, Soil Sci. Soc. Am. J., 2010, 74(6), 2246-225310.2136/sssaj2009.0445Search in Google Scholar

Segnini A., Posadas A., Quiroz R., Milori D.M.B.P., Vaz C.M.P., Martin Neto L., Soil carbon stocks and stability across an altitudinal gradient in southern Peru, J. Soil Water Conserv., 2011, 66(4), 213-22010.2489/jswc.66.4.213Search in Google Scholar

Shahnazari A., Liu F.L., Andersen M.N., Jacobsen S.E., Jensen C.R., Effects of partial root-zone drying on yield, tuber size and water use efficiency in potato under field conditions, Field Crop. Res., 2007, 100, 117-12410.1016/j.fcr.2006.05.010Search in Google Scholar

Shakya S.K., Goss E.M., Dufault N.S., van Bruggen A.H.C., Potential effects of diurnal temperature oscillations on potato late blight with special reference to climate change, Phytopathology, 2015, 105, 230-23810.1094/PHYTO-05-14-0132-RSearch in Google Scholar PubMed

Sicher R.C., Barnaby J.Y., Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress, Physiol. Plant., 2012 144, 238-25310.1111/j.1399-3054.2011.01555.xSearch in Google Scholar PubMed

Singh B.P., Dua V.K., Govindakrishnan P.M., Sharma S., Impact of Climate Change on Potato. In: Singh H., Rao N., Shivashankar K. (Eds.), Climate-Resilient Horticulture: Adaptation and Mitigation Strategies, Springer, India, 2013Search in Google Scholar

Sparks A.H., Forbes G.A., Hijmans R.J., Garrett K.A., A metamodeling framework for extending the application domain of processbased ecological models, Ecosphere, 2011, 2(8), 1-1410.1890/ES11-00128.1Search in Google Scholar

Sparks A.H., Forbes G.A., Hijmans R.J., Garrett K.A., Climate change may have limited effect on global risk of potato late blight, Glob. Change Biol., 2014, 20, 3621-3110.1111/gcb.12587Search in Google Scholar PubMed

Spooner D.M., McLean K., Ramsay G., Waugh R., Bryan G.J., A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping, Proc. Natl. Acad. Sci. USA, 2005, 102(41), 14694-1469910.1073/pnas.0507400102Search in Google Scholar PubMed PubMed Central

Spooner D.M., Ghislain M., Simon R., Jansky S.H., Gavrilenko T., Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes. Bot. Rev., 2014, 80, 283-38310.1007/s12229-014-9146-ySearch in Google Scholar

Sporleder M., Tonnang H.E.Z., Carhuapoma P., Gonzales J.C., Juarez H., Kroschel J., Insect Life Cycle Modeling (ILCYM) software a new tool for regional and global insect pest risk assessments under current and future climate change scenarios. In: Peña JE (Ed), Potential invasive pests of agricultural crops. CABI, Boston, 201310.1079/9781845938291.0412Search in Google Scholar

Sporleder M., Tonnang H., Juarez H., Carhuapoma P., Gonzales J.C., Mendoza D., Simon R., Kroschel J, ILCYM - Insect Life Cycle Modeling. A Software Package for Developing Temperaturebased Insect Phenology Models with Applications for Local, Regional and Global Analysis of Insect Population and Mapping. Manual for ILCYM, version 3.0, International Potato Center, Lima, Peru, 2014Search in Google Scholar

Sporleder M., Carhuapoma P., Kroschel J., Andean potato tuber moth, Symmetrischema tangolias (Gyen 1913). In: Kroschel J., Mujica N., Carhuapoma P., Sporleder M., (Eds.): Pest distribution and risk atlas for Africa: potential global and regional distribution and abundance of agricultural and horticultural pests and associated biocontrol agents under current and future climates. International Potato Center, Lima, Peru, 2016Search in Google Scholar

Tardieu F., Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J. Exp. Bot., 2012, 63, 25-3110.1093/jxb/err269Search in Google Scholar PubMed

Thibeault J.M., Seth A., Garcia M., Changing climate in the Bolivian altiplano: Cmip3 projections for temperature and precipitation extremes, J. Geophys. Res., 2010, 115, 1-1810.1029/2009JD012718Search in Google Scholar

Thibeault J.M., Seth A., Wang G., Mechanisms of summertime precipitation variability in the Bolivian altiplano: Present and future, Int. J. Climatol., 2011, 32(13), 2033-204110.1002/joc.2424Search in Google Scholar

Van Asch M., van Tienderen P.H., Holleman L.J.M., Visser M., Predicting adaptation of phenology in response to climate change, an insect herbivore example. Glob. Change Biol., 2007, 13(8), 1596-160410.1111/j.1365-2486.2007.01400.xSearch in Google Scholar

van der Waals J.E., Krüger K., Franke A.C., Haverkort A.J., Steyn J.M., Climate change and potato production in contrasting South African agro-ecosystems 3. Effects on relative development rates of selected pathogens and pests, Potato Res., 2013, 56, 67-8410.1007/s11540-013-9231-3Search in Google Scholar

Vanloon C.D., The effect of water stress on potato growth, development, and yield. Am. Potato J., 1981, 58, 51-6910.1007/BF02855380Search in Google Scholar

Voigt W., Perner J., Davis A.J., Eggers T., Schumacher J., Bährmann R., Fabian B., Heinrich W., Köhler G., Lichter D., Marstaller R., Sander F.W., Trophic levels are differentially sensitive to climate. Ecology, 2003, 84, 2444-245310.1890/02-0266Search in Google Scholar

Vuille M., Francou B., Wagnon P., Juen I., Kaser G., Mark B.G., Bradley R.S., Climate change and tropical Andean glaciers- Past, present and future, Earth Sci. Rev., 2008a, 89, 79-9610.1016/j.earscirev.2008.04.002Search in Google Scholar

Vuille, M., Kaser G., Juen I., Glacier mass balance variability in the Cordillera Blanca, Peru and its relationship with climate and the large-scale circulation, Glob. Planet. Change, 2008b, 62(1-2), 14-2810.1016/j.gloplacha.2007.11.003Search in Google Scholar

Vuille M., Franquist E., Garreaud R., Lavado W., Caceres B., Impact of the global warming hiatus on Andean temperature, J. Geophys. Res. Atmos., 2015, 120, 3745-375710.1002/2015JD023126Search in Google Scholar

Xu H.L., Qin F.F., Xu Q.C., Tan J.Y., Liu G.M., Applications of xerophytophysiology in plant production - The potato crop improved by partial root zone drying of early season but not whole season, Sci. Hortic., 2011, 129, 528-53410.1016/j.scienta.2011.04.016Search in Google Scholar

Yactayo W., Ramírez D.A., Gutiérrez R., Mares V., Posadas A., Quiroz R., Effect of partial root-zone drying irrigation timing on potato tuber yield and water use efficiency, Agric. Water Manag., 2013, 123, 65-7010.1016/j.agwat.2013.03.009Search in Google Scholar

Yang J., Fleisher D.H., Sicher R.C., Kim J., Baligar V.C., Reddy V.R., Effects of CO2 enrichment and drought pretreatment on metabolite responses to water stress and subsequent rehydration using potato tubers from plants grown in sunlit chambers, J. Plant Physiol., 2015, 189, 126-132.10.1016/j.jplph.2015.10.004Search in Google Scholar PubMed

Received: 2018-02-26
Accepted: 2018-06-21
Published Online: 2018-08-01

© 2018 Roberto Quiroz, et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 7.6.2023 from
Scroll to top button