Abstract
The aim of this study was to analyze whether there are differences between the inoculation with Azospirillum brasilense and the silicon application, thus enabling a higher efficiency of nitrogen fertilization, evaluating micronutrients and silicon concentration in shoots and roots of irrigated corn (Zea mays). The experiment was conducted in Selviria, Brazil, under a no-till system, on a Typic Rhodic Hapludox. The experiment was set up as a randomized block design with four replications, in a 2 × 5 × 2 factorial arrangement consisting of two soil corrective sources (dolomitic limestone and Ca and Mg silicate as source of Si); five N rates (0, 50, 100, 150 and 200 kg ha-1); with and without inoculation with A. brasilense. N rates increased B, Cu and Fe concentrations in shoots and B, Cu, Fe, Mn, Zn and Si in roots. Inoculation provided greater concentrations of B and Fe in shoots, and B in roots. Although inoculation with A. brasilense favored micronutrient uptake, it negatively affected Si concentration in shoots in 2015/16 crop. The use of Si in the form of Ca and Mg silicate promotes an increase in Mn, Si and Zn uptake in shoots and Mn and Si concentration in roots.
References
Agostinho F.B., Tubana B.S., Martins M.S., Datnoff L.E., Effect of different silicon sources on yield and silicon uptake of rice grown under varying phosphorus rates, Plants 2017, 6, 1-1710.3390/plants6030035Search in Google Scholar
Bakhat H.F., Bibi N., Zia Z., Abbas S., Hammad H.M., Fahad S., et al., Silicon mitigates biotic stresses in crop plants: A review, Crop Protec., 2018, 104, 21-3410.1016/j.cropro.2017.10.008Search in Google Scholar
Barker A.V., Pilbeam D.J., Handbook of plant nutrition, 2nd ed., CRC Press, Boca Raton, USA, 201510.1201/b18458Search in Google Scholar
Bashan Y., de-Bashan L.E., How the plant growth-promoting bacterium Azospirillum promotes plant growth - a critical assessment, Adv. Agron., 2010, 108, 77-13610.1016/S0065-2113(10)08002-8Search in Google Scholar
Bremner J.M., Keeney D.R., Determination and isotope-ratio analysis of different forms of nitrogen in soils: 3. Exchangeable ammonium, nitrate, and nitrite by extraction-distillation methods, Soil Sci. Soc. Amer. Proc., 1966, 30, 577-58210.2136/sssaj1966.03615995003000050015xSearch in Google Scholar
Camargo M.S., Korndorfer G.H., Foltran D.E., Silicon absorption and stalk borer incidence by sugarcane varieties in two ratoons, Bioscience J., 2014b, 30, 1304-1313, (in Portuguese)Search in Google Scholar
Camargo M.S., Korndorfer G.H., Wyler P., Silicate fertilization of sugarcane cultivated in tropical soils, Field Crops Res., 2014a, 167, 64-7510.1016/j.fcr.2014.07.009Search in Google Scholar
Cassan B., Diaz-Zorita M., Azospirillum sp. in current agriculture: from the laboratory to the field, Soil Biol. Biochem., 2016, 103, 117-13010.1016/j.soilbio.2016.08.020Search in Google Scholar
Crusciol C.A.C., Soratto R.P., Castro G.S.A., Costa C.H.M., Neto J.F., Foliar application of stabilized silicic acid on soybean, common bean, and peanut, Rev. Cienc. Agron. 2013a, 44, 404-41010.1590/S1806-66902013000200025Search in Google Scholar
Crusciol C.A.C., Soratto R.P., Castro G.S.A., Neto J.F., Costa C.H.M., Leaf application of silicic acid to upland rice and corn, Semina: Cienc. Agrar., 2013b, 34, 2803-280810.5433/1679-0359.2013v34n6p2803Search in Google Scholar
Dardanelli M.S., de Cordoba F.J.F., Espuny M.R., Carvajal M.A.R., Diaz M.E.S., Serrano A.M.G., et al., Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod Factor production under salt stress, Soil Biol. Biochem., 2008, 40, 2713-272110.1016/j.soilbio.2008.06.016Search in Google Scholar
Davarpanah S., Tehranifar A., Davarynejad G., Abadia J., Khorasani R., Effects of foliar applications of zinc and boron nano-fertilizers onpomegranate (Punica granatum cv. Ardestani) fruit yield and quality, Sci. Hort., 2016, 210, 57-6410.1016/j.scienta.2016.07.003Search in Google Scholar
Drissi S., Houssa A.A., Bamouh A., Benbella M., Response of corn silage (Zea mays L.) to zinc fertilization on a sandy soil under field and outdoor container conditions, J. Saudi Soc. Agric. Sci., 2017, 16, 145-15310.1016/j.jssas.2015.05.002Search in Google Scholar
Duca D., Lorv J., Patten C.L., Rose D., Glick B.R., Indole-3-acetic acid in plantmicrobe interactions, Antonie van Leeuwenhoek, 2014, 106, 85-12510.1007/s10482-013-0095-ySearch in Google Scholar PubMed
Empresa Brasileira de Pesquisa Agropecuaria - Embrapa. Centro Nacional de Pesquisa de Solos, Brazilian System of soil classification, 3rd ed., DF: Embrapa, Brasilia, 2013, (in Portuguese.)Search in Google Scholar
Epstein E., Silicon: its manifold roles in plants, Ann. Appl. Biol., 2009, 155, 155-16010.1111/j.1744-7348.2009.00343.xSearch in Google Scholar
Espindula M.C., Rocha V.S., Souza M.A.D., Campanharo M., Pimentel A.J.B., Urease inhibitor (NBPT) and efficiency of single or split application of urea in wheat crop, Rev. Ceres, 2014, 61, 273-7910.1590/S0034-737X2014000200016Search in Google Scholar
Fernando D.R., Lynch J.P., Manganese phytotoxicity: new light on an old problem, Ann. Bot., 2015, 116, 313-31910.1093/aob/mcv111Search in Google Scholar PubMed PubMed Central
Fibach-Paldi S., Burdman S., Okon Y., Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense, FEMS Microbiol. Lett., 2012, 326, 99-10810.1111/j.1574-6968.2011.02407.xSearch in Google Scholar PubMed
Fukami J., Nogueira M.A., Araujo R.S., Hungria M., Accessing inoculation methods of maize and wheat with Azospirillum brasilense, AMB Express, 2016, 6, 3-1610.1186/s13568-015-0171-ySearch in Google Scholar PubMed PubMed Central
Fukami J., Ollero F.J., Megias M., Hungria M., Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth, AMB Express, 2017, 7, 153-16310.1186/s13568-017-0453-7Search in Google Scholar PubMed PubMed Central
Galindo F.S., Teixeira Filho M.C.M., Buzetti S., Santini J.M.K., Alves C.J., Nogueira L.M., et al., Corn yield and foliar diagnosis affected by nitrogen fertilization and inoculation with Azospirillum brasilense, Rev. Bras. Cienc. Solo, 2016, 40, e01503610.1590/18069657rbcs20150364Search in Google Scholar
Galindo F.S., Teixeira Filho M.C.M., Buzetti S., Boleta E.H.M., Rodrigues W.L., Santini J.M.K., et al., Technical and economic viability of wheat with forms of application and doses of boron, J. Agric. Sci., 2018, 10, 306-31510.5539/jas.v10n4p306Search in Google Scholar
Galindo F.S., Teixeira Filho M.C.M., Buzetti S., Santini J.M.K., Alves C.J., Ludkiewicz M.G.Z., Wheat yield in the Cerrado as affected by nitrogen fertilization and inoculation with Azospirillum brasilense, Pesq. Agropec. Bras., 2017, 52, 794-80510.1590/s0100-204x2017000900012Search in Google Scholar
Gong H., Chen K., The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions, Acta Phys. Plant, 2012, 34, 1-610.1007/s11738-012-0954-6Search in Google Scholar
Gunes A., Turan M., Gulluce M., Sahin F., Nutritional content analysis of plant growth-promoting rhizobacteria species, Eur. J. Soil Biol., 2014, 60, 88-9710.1016/j.ejsobi.2013.10.010Search in Google Scholar
Guntzer F., Keller C., Meunier J., Benefits of plant silicon for crops: A review, Agron. Sustain. Dev., 2012, 32, 201-21310.1007/s13593-011-0039-8Search in Google Scholar
Hansch R., Mendel R.R., Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl), Curr. Opin. Plant Biol.., 2009, 12, 259-26610.1016/j.pbi.2009.05.006Search in Google Scholar PubMed
Hartmann A., Bashan Y., Ecology and application of Azospirillum and other plant growth-promoting bacteria (PGPB), Eur. J. Soil Biol., 2009, 45, 1-210.1016/j.ejsobi.2008.11.004Search in Google Scholar
Hungria M., Campo R.J., Souza E.M., Pedrosa F.O., Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil, Plant Soil, 2010, 331, 413-42510.1007/s11104-009-0262-0Search in Google Scholar
Isa M., Bai S., Yokoyama T., Ma J.F., Ishibashi Y., Yuasa T., et al., Silicon enhances growth independent of silica deposition in a low-silica rice mutant, lsi1. Plant Soil 2010, 331, 361-37510.1007/s11104-009-0258-9Search in Google Scholar
Korndӧrfer G.H., Pereira H.S., Nolla A., Silicon analysis: soil, plant and fertilizer, Boletim Tecnico, 2, Uberlandia, GPSi/ ICIAG/UFU, 2004, (in Portuguese)Search in Google Scholar
Korndӧrfer G.H., Silva G.C., Teixeira I.R., Silva A.G., Freitas R.S., Effect of silicon fertilizer on forage grasses and soil chemical characteristics, Pesq. Agropec. Trop., 2010, 40, 119-125Search in Google Scholar
Lima M.A., Castro V.F., Vidal J.B., Eneas-Filho J., Silicon application on plants of maize and cowpea under salt stress, Rev. Cienc. Agron., 2011, 42, 398-403, (in Portuguese)10.1590/S1806-66902011000200019Search in Google Scholar
Ma J.F., Tamai K., Yamaji N., Mitani N., Konishi S., Katsuhara M., et al., A silicon transporter in rice. Nature, 2006, 440, 668-69110.1038/nature04590Search in Google Scholar PubMed
Ma J.F., Yamaji N., Mitani N., An efflux transporter of silicon in rice, Nature, 2007, 448, 209-21210.1038/nature05964Search in Google Scholar PubMed
Ma J.F., Yamanji N., Functions and transport of silicon in plants, Cell. Mol. Life Sci., 2008, 65, 3049-305710.1007/s00018-008-7580-xSearch in Google Scholar PubMed
Malavolta E., Vitti G.C., Oliveira S.A., Evaluation of the nutritional status of plants: Principles and applications, 2nd .ed., Potafos, Piracicaba, 1997, (in Portuguese)Search in Google Scholar
Marafon A.C., Endres L., Silicon: fertilization and nutrition in higher plants, Amaz. J. Agric. Environ. Sci., 2013, 56, 380-38810.4322/rca.2013.057Search in Google Scholar
Marks B.B., Megias M., Ollero F.J., Nogueira M.A., Araujo R.S., Hungria M., Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipo-chitooligosaccharides (LCOs), AMB Express, 2015, 5, 71-8210.1186/s13568-015-0154-zSearch in Google Scholar PubMed PubMed Central
Marschner P., Marschner´s mineral nutrition of higher plants, 3rd ed., Academic Press, New York, 2012Search in Google Scholar
Meena V., Dotaniya M., Coumar V., Rajendiran S., Kundu S., Rao A.S., A case for silicon fertilization to improve crop yields in tropical soils, Proc. Natl. Acad. Sci. India, Sect. B Biol. Sci., 2014, 84, 505-51810.1007/s40011-013-0270-ySearch in Google Scholar
Mercado-Blanco J., Prieto P., Bacterial endophytes and root hairs, Plant Soil, 2012, 361, 301-30610.1007/s11104-012-1212-9Search in Google Scholar
Metwally A.M., El-Shazoly R.M., Hamada A.M., Physiological responses to excess boron in wheat cultivars, Eur. J. Biol. Res., 2016, 7, 1-8Search in Google Scholar
Meza B., de-Bashan L.E., Bashan Y., Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris, Res. Microbiol., 2015, 166, 72-8310.1016/j.resmic.2014.12.010Search in Google Scholar PubMed
Nunes P.H.M.P., Aquino L.A., Santos L.P.D.D., Xavier F.O., Dezordi L.R., Assuncao N.S., Yield of the irrigated wheat crop subjected to nitrogen application and to inoculation with Azospirillum brasilense, Rev. Bras. Cienc. Solo, 2015, 39, 174-182, (in Portuguese)10.1590/01000683rbcs20150354Search in Google Scholar
Ojeda-Barrios D.L., Perea-Portillo E., Hernandez-Rodriguez O.A., Martinez-Tellez J., Abadia J., Lombardini L., Foliar fertilization with zinc in pecan trees, HortScience, 2014, 49, 562-56610.21273/HORTSCI.49.5.562Search in Google Scholar
Pankievicz V.C.S., Amaral F.P., Santos K.F.D.N., Agtuca B., Xu Y., Schueller M.J., et al., Robust biological nitrogen fixation in a model grass-bacterial association, Plant J., 2015, 81, 907-1910.1111/tpj.12777Search in Google Scholar PubMed
Philippot L., Raaijmakers J.M., Lemanceau P., van der Putten W.H., Going back to the roots: the microbial ecology of the rhizosphere, Nat. Rev. Microbiol., 2013, 11, 789-79910.1038/nrmicro3109Search in Google Scholar PubMed
Raij B., van Andrade J.C., Cantarella H., Quaggio J.A., Chemical analysis for fertility evaluation of tropical soils, IAC, Campinas, 2001, (in Portuguese)Search in Google Scholar
Reis M.A.R., Arf O., da Silva M.G., de Sa M.E., Buzetti S., Silicon application in upland rice under sprinkler irrigation, Acta Sci. Agron., 2008, 30, 37-43, (in Portuguese)Search in Google Scholar
Santos A.R.S., Etto R.M., Furmam R.W., Freitas D.L., Santos K.F.D.N., Souza E.M., et al., Labeled Azospirillum brasilense wild type and excretion-ammonium strains in association with barley roots, Plant Physiol. Biochem., 2017b, 118, 422-42610.1016/j.plaphy.2017.07.003Search in Google Scholar PubMed
Santos E.F., Santini J.M.K., Paixao A.P., Furlani Junior E., Lavres J., Campos M., et al., Physiological highlights of manganese toxicity symptoms in soybean plants: mn toxicity responses, Plant Physiol. Biochem., 2017a, 113, 6-1910.1016/j.plaphy.2017.01.022Search in Google Scholar PubMed
Sarto M.V.M., Lana M.C., Rampim L., Rosset J.S., Wobeto J.R., Effects of silicate application on soil fertility and wheat yield, Semina: Cienc. Agrar., 2015, 36, 4071-408210.5433/1679-0359.2015v36n6Supl2p4071Search in Google Scholar
SAS Institute, Procedure Guide for Personal Computers, Version 9.4., Cary, 2015Search in Google Scholar
Schaller J., Brackhage C., Dudel E.G., Silicon availability changes structural carbon ratio and phenol content of grasses, Environ. Exp. Bot., 2012, 77, 283-28710.1016/j.envexpbot.2011.12.009Search in Google Scholar
Shapiro S.S., Wilk M.B., An analysis of variance test for normality (complete samples), Biometrika, 1965, 52, 591-61110.1093/biomet/52.3-4.591Search in Google Scholar
da Silva F.C., Manual of chemical analyzes of soils, plants and fertilizers, In: da Silva F.C. (Ed.), 2nd ed., Brasilia, Embrapa Informacao Tecnologica, Embrapa Solos, Rio de Janeiro, 2009, (in Portuguese)Search in Google Scholar
Stevens W.B., Mulvaney R.L., Khan S.A., Hoeft R.G., Improved diffusion methods for nitrogen and 15nitrogen analysis of Kjeldahl digests, J. AOAC Int., 2000. 83, 1039-104610.1093/jaoac/83.5.1039Search in Google Scholar
Teixeira Filho M.C.M., Buzetti S., Andreotti M., Benett C.G.S., Arf O., Sa M.E., Wheat nitrogen fertilization under no till on the low altitude Brazilian Cerrado, J. Plant Nutr., 2014, 37, 1732-174810.1080/01904167.2014.889150Search in Google Scholar
United States Department of Agriculture - USDA. Keys to soil taxonomy, 11th ed., USDA, NRCS, Washington, 2010Search in Google Scholar
Xu G., Fan X., Miller A.J., Plant nitrogen assimilation and use efficiency, Ann. Rev. Plant Biol., 2012, 63, 153-18210.1146/annurev-arplant-042811-105532Search in Google Scholar PubMed
Yamaji N., Sakurai G., Mitani-Ueno N., Ma J.F., Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice, Proc. Nat. Acad. Sci. U.S.A., 2015, 112, 11401-1140610.1073/pnas.1508987112Search in Google Scholar PubMed PubMed Central
Zawoznik M.S., Ameneiros M., Benavides M.P., Vazquez S., Groppa M.D., Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings, Appl. Microbiol. Biotechnol., 2011, 90, 1389-139710.1007/s00253-011-3162-1Search in Google Scholar PubMed
© by Fernando Shintate Galindo, et al., published by De Gruyter
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.