Abstract
Biodynamic agriculture, which considered biodynamic preparations (BP) and compost as essential to farms sustainability, surged as an alternative almost a century ago. Composting is a way to obtain either biofertilizers or soil amendments, whereas the static piles method reduces energy and cost because no turnings are needed. The present study aims to evaluate the BP effect on physical, chemical and biological properties of static piles compost from prickly pear cactus and moringa crop wastes (regional principal substrates) over 100 days of composting. The experiment was carried out in an organic farm (Nuevo León, Mexico) considering four treatments: T1, Prickly pear cactus+BP; T2, Moringa+BP; T3, Prickly pear cactus and T4, Moringa. Results showed significantly higher bacterial activity (p<0.05) in T1 (until 1.38x1010 CFU), therefore it had the highest temperatures and mineralization. Treatments with prickly pear cactus attained the highest temperatures, compared with those with moringa (significantly in 71% of total sampling days, p<0.05). An aerobic environment was maintained by the passive aeration system (holed PVC pipes placed at the bottom layer). The final material was considered to be sanitized, according to Enterobacteriaceae, Escherichia coli and Salmonella/Shigella analysis for quality control. Results indicate the BP efficiency on regional substrates decomposition, by using the static piles method.
References
Barberi P., Weed management in organic agriculture: Are we addressing the right issues?, Weed Res., 2002, 42(3), 177–19310.1046/j.1365-3180.2002.00277.xSearch in Google Scholar
Bustamante M.A., Paredes C., Marhuenda-Egea F.C., Pérez-Espinosa A., Bernal M.P., Moral R., Co-composting of distillery wastes with animal manures: Carbon and nitrogen transformations in the evaluation of compost stability, Chemosphere, 2008, 72(4), 551–55710.1016/j.chemosphere.2008.03.030Search in Google Scholar PubMed
Carpenter-Boggs L., Reganold J.P., Kennedy A.C., Effects of biodynamic preparations on compost development, Biol. Agric. Hortic., 2000, 17(4), 313–32810.1080/01448765.2000.9754852Search in Google Scholar
Cayuela M.L., Millner P.D., Meyer S.L.F., Roig A., Potential of olive mill waste and compost as biobased pesticides against weeds, fungi, and nematodes, Sci. Total Environ., 2008, 399(1-3), 11–1810.1016/j.scitotenv.2008.03.031Search in Google Scholar
Deportes I., Benoit-Guyod J.L., Zmirou D., Bouvier M.C., Microbial disinfection capacity of municipal solid waste (MSW) composting, J. Appl. Microbiol., 1998, 85(2), 238–24610.1046/j.1365-2672.1998.00484.xSearch in Google Scholar
Droffner M.L., Brinton W.F., Survival of E. coli and Salmonella populations in aerobic thermophilic composts as measured with DNA gene probes, Zbl. Hyg. Umweltmed., 1995, 197(5), 387–397Search in Google Scholar
Escudero A., González-Arias A., del Hierro O., Pinto M., Gartzia- Bengoetxea N., Nitrogen dynamics in soil amended with manures composted in dynamic and static systems, J. Environ. Manage., 2012, 108, 66–7210.1016/j.jenvman.2012.04.046Search in Google Scholar
Etheridge R.D., Pesti G.M., Foster E.H., A comparison of nitrogen values obtained utilizing the Kjeldahl nitrogen and Dumas combustion methodologies (Leco CNS 2000) on samples typical of an animal nutrition analytical laboratory, Anim. Feed Sci. Tech., 1998, 73(1-2), 21–2810.1016/S0377-8401(98)00136-9Search in Google Scholar
Gantzer C., Gaspard P., Galvez L., Huyard A., Dumouthier N., Schwartzbrod J., Monitoring of bacterial and parasitological contamination during various treatment of sludge, Water Res., 2001, 35(16), 3763–377010.1016/S0043-1354(01)00105-1Search in Google Scholar
Gebresamuel N., Gebre-Mariam T., Comparative physico-chemical characterization of the mucilages of two cactus pears (Opuntia spp.) obtained from Mekelle, Northern Ethiopia, J. Biomater. Nanobiotech., 2012, 03(01), 79–8610.4236/jbnb.2012.31010Search in Google Scholar
Gigliotti G., Proietti P., Said-Pullicino D., Nasini L., Pezzolla D., Rosati L., et al., Co-composting of olive husks with high moisture contents: organic matter dynamics and compost quality, Int. Biodeter. Biodegr., 2012, 67, 8-1410.1016/j.ibiod.2011.11.009Search in Google Scholar
Hess T.F., Grdzelishvili I., Sheng H., Hovde C.J., Heat Inactivation of E. coli During Manure Composting, Compost Sci. Util., 2004, 12(4), 314–32210.1080/1065657X.2004.10702200Search in Google Scholar
Hubbe M.A., Nazhad M., Sánchez C., Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: A Review, Bioresources, 2010, 5(4), 2808–285410.15376/biores.5.4.2808-2854Search in Google Scholar
Isobaev P., Bouferguene A., Wichuk K.M., McCartney D., An enhanced compost temperature sampling framework: Case study of a covered aerated static pile, Waste Manage., 2014, 34(7), 1117–112410.1016/j.wasman.2014.03.016Search in Google Scholar
Jiang T., Schuchardt F., Li G., Guo R., Zhao Y., Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting, J. Environ. Sci., 2011, 23(10), 1754-176010.1016/S1001-0742(10)60591-8Search in Google Scholar
Krey T., Vassilev N., Baum C., Eichler-Löbermann B., Effects of long-term phosphorus application and plant-growth promoting rhizobacteria on maize phosphorus nutrition under field conditions, Eur. J. Soil Biol., 2013, 55, 124–13010.1016/j.ejsobi.2012.12.007Search in Google Scholar
Lung A.J., Lin C.M., Kim J.M., Marshall M.R., Nordstedt R., Thompson N.P., et al., Destruction of Escherichia coli O157:H7 and Salmonella enteritidis in cow manure composting, J. Food Protect., 2001, 64(9), 1309–131410.4315/0362-028X-64.9.1309Search in Google Scholar
Luo W., Chen T.B., Zheng G.D., Gao D., Zhang Y.A., Gao W., Effect of moisture adjustments on vertical temperature distribution during forced-aeration static-pile composting of sewage sludge, Resour. Conserv. Recy., 2008, 52(4), 635–64210.1016/j.resconrec.2007.08.004Search in Google Scholar
Masson P., Masson V., Landwirtschaft, Garten- und Weinbau biodynamisch, AT Verlag, Deutschland, 2013Search in Google Scholar
Matsuhiro B., Lillo L.E., Sáenz C., Urzúa C.C., Zárate O., Chemical characterization of the mucilage from fruits of Opuntia ficus indica, Carbohyd. Polym., 2006, 63(2), 263–26710.1016/j.carbpol.2005.08.062Search in Google Scholar
Mäder P., Fliessbach A., Dubois D., Gunst L., Fried P., Niggli U. Soil fertility and biodiversity in organic farming, Sci., 2002, 296(5573), 1694-169710.1126/science.1071148Search in Google Scholar PubMed
Nasini L., De Luca G. de, Ricci A., Ortolani F., Caselli A., Massaccesi L., et al., Gas emissions during olive mill waste composting under static pile conditions, Int. Biodeter. Biodegr., 2016, 107, 70–7610.1016/j.ibiod.2015.11.001Search in Google Scholar
Pfeiffer E., Pfeiffer´s introduction to biodynamics, Floris Books, United Kingdom, 2011Search in Google Scholar
Reeve J.R., Carpenter-Boggs L., Reganold J.P., York A.L., Brinton W.F., Influence of biodynamic preparations on compost development and resultant compost extracts on wheat seedling growth, Bioresource Technol., 2010, 101(14), 5658–566610.1016/j.biortech.2010.01.144Search in Google Scholar
Sen B., Chandra T.S., Chemolytic and solid-state spectroscopic evaluation of organic matter transformation during vermicomposting of sugar industry wastes, Bioresource Technol., 2007, 98(8), 1680–168310.1016/j.biortech.2006.06.007Search in Google Scholar
Sepúlveda E., Sáenz C., Aliaga E., Aceituno C., Extraction and characterization of mucilage in Opuntia spp, J. Arid Environ., 2007, 68(4), 534–54510.1016/j.jaridenv.2006.08.001Search in Google Scholar
Singh D.P., Singh, H.B., Prabha R., Microbial inoculants in sustainable agricultural productivity: Vol. 1 research perspectives, Springer, New York, United States of America, 201610.1007/978-81-322-2647-5Search in Google Scholar
Solano M.L., Iriarte F., Ciria P., Negro M.J., SE- structure and environment: performance characteristics of three aeration systems in the composting of sheep manure and straw., J. Agr. Eng. Res., 2001, 79(3), 317-32910.1006/jaer.2001.0703Search in Google Scholar
Sradnick A., Murugan R., Oltmanns M., Raupp J., Joergensen R.G., Changes in functional diversity of the soil microbial community in a heterogeneous sandy soil after long-term fertilization with cattle manure and mineral fertilizer, Appl. Soil Ecol., 2013, 63, 23-2810.1016/j.apsoil.2012.09.011Search in Google Scholar
Steiner, R., Curso sobre agricultura biológico-dinámica, Rudolf Steiner, Madrid, España, 2009Search in Google Scholar
Stoffella P.J., Kahn B.A., Compost utilization in horticultural cropping systems, First Edition, CRC Press, Boca Raton, Flor., 2006Search in Google Scholar
Tatàno F., Pagliaro G., Di Giovanni P., Floriani E., Mangani F., Biowaste home composting: Experimental process monitoring and quality control, Waste Manage., 2015, 38, 72–8510.1016/j.wasman.2014.12.011Search in Google Scholar
Turner C., The thermal inactivation of E. coli in straw and pig manure, Bioresource Technol., 2002, 83(1), 57-6110.1016/S0960-8524(02)00008-1Search in Google Scholar
United States Environmental Protection Agency (US EPA), Biosolids technology fact sheet use of composting for biosolids management, EPA/832-F-02-024, 2002Search in Google Scholar
Villanueva-Rey P., Vázquez-Rowe I., Moreira M.T., Feijoo G., Comparative life cycle assessment in the wine sector: Biodynamic vs. conventional viticulture activities in NW Spain, J. Clean. Prod., 2014, 65, 330–34110.1016/j.jclepro.2013.08.026Search in Google Scholar
von Wistinghausen C., Scheibe W., von Wistinghausen E., König U. J., La elaboración de los preparados biodinámicos, Editorial Rudolf Steiner, España, 2000Search in Google Scholar
Wang L., Oda Y., Grewal S., Morrison M., Michel F.C., Yu Z., Persistence of resistance to erythromycin and tetracycline in swine manure during simulated composting and lagoon treatments, Microb. Ecol., 2012, 63(1), 32–4010.1007/s00248-011-9921-9Search in Google Scholar PubMed
Yang L., Zhang S., Chen Z., Wen Q., Wang Y., Maturity and security assessment of pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs) with sewage sludge, Bioresource Technol., 2016, 204, 185–19110.1016/j.biortech.2016.01.004Search in Google Scholar PubMed
© 2019 Heberto Antonio Rodas-Gaitán et al., published by De Gruyter
This work is licensed under the Creative Commons Attribution 4.0 Public License.