Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access August 3, 2020

Microbial antagonists against plant pathogens in Iran: A review

  • Mehrdad Alizadeh , Yalda Vasebi and Naser Safaie EMAIL logo
From the journal Open Agriculture

Abstract

The purpose of this article was to give a comprehensive review of the published research works on biological control of different fungal, bacterial, and nematode plant diseases in Iran from 1992 to 2018. Plant pathogens cause economical loss in many agricultural products in Iran. In an attempt to prevent these serious losses, chemical control measures have usually been applied to reduce diseases in farms, gardens, and greenhouses. In recent decades, using the biological control against plant diseases has been considered as a beneficial and alternative method to chemical control due to its potential in integrated plant disease management as well as the increasing yield in an eco-friendly manner. Based on the reported studies, various species of Trichoderma, Pseudomonas, and Bacillus were the most common biocontrol agents with the ability to control the wide range of plant pathogens in Iran from lab to the greenhouse and field conditions.

1 Introduction

Increasing human population in the world demands more food (70 to 100%) by 2050 to supply human needs (Godfray et al. 2010). Furthermore, different pests and diseases cause annual economic losses (20 to 40%) in agricultural products by decreasing the crop yield, destroying the quality, and pollution of products with toxic chemicals (Guo et al. 2013). Therefore, growers have generally concentrated on the intensive use of chemicals for the management of pests and diseases which induce several problems, including resistance to pesticides, hazardous effects on human health, loss of beneficial soil microorganisms, entrance of residual toxic material in the food chain, and reduction in macro–microorganism biodiversity (Sindhu et al. 2016). These problems make enhanced attempts for developing ecofriendly microbe-based pesticides or biopesticides which use biological control agents (BCAs) as active ingredients and basically act different from common chemical pesticides (Sindhu et al. 2009).

Biological control, which attracted broad considerations in the past few decades, is defined as a bioeffector strategy that uses other living organisms for controlling insects, mites, weeds, and phytopathogens (Flint et al. 1998). Biocontrol agents either with antagonistic activities, or modifying effects on plant physiology and anatomy, mostly reduce the negative effects of pathogens. The advantages of beneficial microbes for associated plants are establishment of antagonistic microorganisms, prevention of phytopathogens, overall improvement of plant health, plant growth promotion, enhanced nutrient availability and uptake, and increased resistance to both biotic and abiotic stresses in the hosts (Vinale et al. 2014).

The first published studies on biological control of plant pathogens in Iran were presented in 1992. Trichoderma spp. and Gliocladium spp. were the first biocontrol agents applied against Athelia rolfsii (Sclerotium rolfsii), Rhizoctonia solani, and Fusarium solani, the causal agents of diseases on groundnut, bean, and apple, respectively (Asghari and Myee 1992; Bazgir et al. 1992; Karampour and Okhovat 1992). In the twenty-first century, with the improvement of biological control of plant pathogens throughout Iran, different biocontrol agents have been applied against the various pathogens in vitro, in greenhouse and field conditions. A large number of fungal and bacterial biocontrol agents have been found as the most important agents for plant disease management with identification of their role in plant pathogen management (Ramadan et al. 2016). Trichoderma, Pseudomonas, and Bacillus species have mostly been used for biological control of phytopathogens in Iran (Peyghami and Nishabouri 1998; Shahiri Tabarestani et al. 2000; Mostofizadeh-Ghalamfarsa et al. 2002; Niknejad-Kazempour et al. 2004a,b; Golzary et al. 2008b; Peighami-Ashnaei et al. 2009a,b; Ojaghian et al. 2010; Khalighi and Khodakaramian 2012; Naeimi and Zare 2013; Azizpour and Rouhrazi 2016; Karimi et al. 2016; Khaledi and Taheri 2016; Abdoli et al. 2018; Hosini et al. 2018; Zeynadini-Riseh et al. 2018). Furthermore, because of increasing the stability of biological agents, the bioformulation progress has recently been evaluated in Iran (Karimi and Sadeghi 2015). The current study is a comprehensive review of applying fungal and bacterial antagonists for biological control of various plant diseases caused by fungal, bacterial, and nematodes in Iran during a period of 26 years.

2 Mechanisms of biocontrol agents for the management of phytopathogens

A key factor for attaining an effective prevention of phytopathogens in their hosts is the knowledge about their mechanism of action. Understanding the mechanisms in the biological control process can allow the establishment of favorable conditions in the interaction between phytopathogen and biocontrol agent that is important in performing a successful biological control strategy in a specific pathosystem (Handelsman and Stabb 1996). The microorganisms operating for biocontrol of phytopathogens have different modes of action (Nega 2014). In the present study, the most common mechanisms of interspecies antagonisms include direct antagonism, mixed-path antagonism, and indirect antagonism (Pal and McSpadden 2006; Parveen et al. 2016), which lead to biological control of plant pathogens, have been addressed. Microbial biocontrol agents take care of plants against pathogens via different modes. These agents could induce resistance or initial enhanced resistance against pathogens without direct confrontation with the phytopathogen. Also, competitions for nutrients and spaces are additional indirect interactions with phytopathogens (Köhl et al. 2019). These agents might directly interact with the pathogens using hyperparasitism (Ghorbanpour et al. 2018) or antibiosis (Raaijmakers and Mazzola 2012). Without these agents in soil and tissues of plants, the pathogens easily attack plants and could weaken or kill considered hosts (Figure 1). These modes will be discussed in the following sentences.

Figure 1 Left: in the absence of antagonists, different pathogens especially fungi, bacteria, and nematodes can cause losses in plants. Over time, affected plants will show the weakness in the development and symptoms of diseases. Right: in the presence of antagonists with different biocontrol mechanisms, such as competition, parasitism, and antibiosis, the pathogens will not be able to progress in the host, and thus, the plant can grow and develop well rather than the absence of antagonists in soil and tissues of hosts.
Figure 1

Left: in the absence of antagonists, different pathogens especially fungi, bacteria, and nematodes can cause losses in plants. Over time, affected plants will show the weakness in the development and symptoms of diseases. Right: in the presence of antagonists with different biocontrol mechanisms, such as competition, parasitism, and antibiosis, the pathogens will not be able to progress in the host, and thus, the plant can grow and develop well rather than the absence of antagonists in soil and tissues of hosts.

2.1 Parasitism

Mycoparasitism, direct parasitism or hyperparasitism, is the ability of fungal antagonistic agents to parasite other fungi for utilizing them as food. Mycoparasitism causes either complete death of fungal propagules or destruction and lysis of their structure (Maloy 1993). Mycoparasitism depends upon the sequential occurrence of the following events: coming into close contact with fungal pathogen, mutual recognition between antagonist and pathogen, lytic enzyme secretion by antagonist, penetration into the host, active growth of antagonist into the host, and exit (Spadaro and Gullino 2004; Talibi et al. 2014). Various chemical compounds can be implicated in these processes, such as lectins, during the initial contact and recognition and cell wall-degrading enzymes (CWDEs), such as β-1,3-glucanases, chitinases, proteinases, and lipases, during the penetration process (Vos et al. 2015). Wisniewski et al. (1991) who studied biological control of Botrytis cinerea by yeast antagonist Meyerozyma guilliermondii (Pichia guilliermondii) demonstrated that lectin-like interaction resulted in firm attachment of antagonist’s cell to B. cinerea. Lysis of fungal cell wall also occurred due to the action of extracellular β-1,3-glucanase enzyme secreted by the antagonistic yeast. Trichoderma species are specific mycoparasitic fungi with the species of T. atroviride, T. virens, and T. reesei confirming that mycoparasitism is their ancestral lifestyle (Kubicek et al. 2011).

One of the main components in mycoparasitism event is CWDEs including endochitinases, β-1,3-glucanases, and proteases that are extracellular enzymes secreted by Trichoderma (Vos et al. 2015). After initial pathogen recognition by Trichoderma, hyphae wind around the pathogen’s hyphae by forming hook, the appressorium permeates into the pathogen cell, and chitin is broken down by enzymes such as chitinase and glucanase (Ghorbanpour et al. 2018). Subsequently, mycoparasitic’s hyphae release antibiotic compounds which penetrate the affected pathogen’s hyphae and resynthesize the host cell wall inhibited by these compounds (Toghueoa et al. 2016).

2.2 Antibiotic

Antibiotic is a secreting secondary metabolite with low molecular weight that is deleterious to the other microorganisms at low concentrations (Fravel 1988). The antibiotic produced by biocontrol agents decreases the disease symptoms as a main contributing mechanism particularly under soil conditions (Haas and Défago 2005). Some soilborne microorganisms, such as different strains of fluorescent Pseudomonas and Bacillus (Weller 1988) and Trichoderma species (Benítez et al. 2004), have appropriate features for biocontrol abilities. Furthermore, several strains of these species are able to promote plant growth and development as well as the disease prevention (Fernando et al. 2006; Arseneault and Filion 2017). The antibiotics at subinhibitory concentrations may inhibit the release of extracellular virulence factors and adherence mechanisms in bacteria (Kumar et al. 2008). Secondary metabolites can impress the community of soil microbial ecosystems in a variety of ways and levels (Abawi and Widmer 2000). The antibiotic production has been confirmed to be an important mechanism applied by microorganisms to manage a wide range of plant pathogens (McSpadden and Fravel 2002). Even at subinhibitory concentrations, antibiotics can create physiological changes in organisms. For instance, in Pseudomonas aeruginosa quinolone and macrolide antibiotics can block cell signaling and production of virulence factors (Ulloa-Ogaz et al. 2015). Bacillus spp. produce enzymes, exotoxins, and metabolites with nematicidal activity (Engelbrecht et al. 2018). Although several rhizobacteria such as Pasteuria, Pseudomonas, and Streptomyces have nematicidal efficacy, the largest decrease in the hatching of Meloidogyne javanica eggs was found in Bacillus (74%) and Pseudomonas (54.77%) (Turatto et al. 2017). Furthermore, Bacillus spp. with antibiotic production are applied as antifungal antagonists for controlling postharvest diseases. Pyrrolnitrin antibiotic produced by Burkholderia cepacia has been used against Penicillium digitatum, B. cinerea, and Penicillium expansum pathogens. Similarly, syringomycin produced by Pseudomonas syringae was utilized to prevent citrus green mold and apple grey mold (Dukare et al. 2019). Alongside these beneficial microorganisms, Streptomyces spp. can help plants with antibiotic production against phytopathogens (Olanrewaju and Babalola 2019).

2.3 Cell wall degradation enzymes

Microorganisms which produce enzymes are able to hydrolyze chitin, proteins, cellulose, and hemicellulose and also may play a role in the suppression of plant pathogens. Chitin and β-1,3-glucans are major constituents of many fungal cell walls (Lam and Gaffney 1993). Trichoderma strains with antagonistic potential have been mainly characterized by their ability to secrete enzymes such as chitinases, glucanases, and proteases that hydrolyze the cell walls of pathogens (López-Mondéjar et al. 2011). Geraldine et al. (2013) reported that N-β-acetylglucosaminidase and β-1,3-glucanase are the key components of Trichoderma species action in biocontrol of Sclerotinia sclerotiorum in the field. Serratia marcescens which produces chitinases was found to suppress the growth of Botrytis spp., R. solani, and Fusarium oxysporum (Ningaraju 2006).

2.4 Competition for available resources

Microorganisms’ challenge for available resources is named competition. For instance, when pine stumps were inoculated by spores Phlebiopsis gigantea (Phlebia gigantea), the spores prevent from Heterobasidion annosum infections. Considering that the pathogen is non-established on the pine, the severity of root rot disease could be decreased by the biocontrol agent (Cook and Baker 1983). Despite the possibility of existing antagonistic relationship (e.g., antibiosis) between the two fungi, the achievement of available resource sites may be the first mechanism in competition (Maloy 1993). Carbon sources such as glucose and fructose are one of the important action modes in yeasts Papiliotrema laurentii (Cryptococcus laurentii) and Sporobolomyces roseus, which can control B. cinerea in decreasing its colonization and sporulation (Ghorbanpour et al. 2018). In the biological control of P. digitatum by Debaryomyces hansenii, competition plays an important role in obtaining nutrients in occupied sites (Droby et al. 1998). Furthermore, arbuscular mycorrhiza due to the creation of physiological and anatomical modifications can limit the progression of pathogen. These changes involve root lignification, creation of a thick cell wall using pectin, chitinase activation, and transfer of pathogenesis-related protein-1a to the infected area of root (Malik et al. 2016).

2.5 Siderophore

Low-molecular weight chelators with a very high and specific affinity for Fe(iii) are called siderophores (Barbeau et al. 2002). Aerobic and facultative anaerobic microorganisms with the ability of siderophore production may have an important role in microorganism interactions (Haggag and Mohamed 2007). Siderophores have been known to play a significant role in phytopathogen prevention by several bacteria as BCAs which prevent the growth, development, and metabolic activity of phytopathogens by iron chelation (Haggag Wafaa et al. 2000). Different species of Trichoderma as biocontrol antagonists release more effective siderophores that chelate iron (Fe3+) and prevent growth and development of other fungal pathogens (Naher et al. 2014). Iron competition can be a limiting factor in alkaline soils for microbial growth and development (Leong and Expert 1989). Siderophores produced by some bacteria, such as fluorescent pseudomonads, have very high dependency for iron, as a result, sequestering these limited resources from other microflora can inhibit their growth and development (Loper and Buyer 1991). In several studies, it has been reported that Pseudomonas fluorescens with siderophore biosynthesis plays an important role in the prevention of pathogen (Costa and Loper 1994). Rahnella aquatilis with siderophore production can inhibit B. cinerea and P. expansum postharvest pathogens (Calvo et al. 2007). The siderophore pulcherrimin produced by Metschnikowia pulcherrima and Monilinia fructicola yeasts was applied for biological control of postharvest apple pathogens B. cinerea, Alternaria alternata, and P. expansum (Saravanakumar et al. 2008). In particular, several species of Streptomyces detach iron by siderophore production in a way that some pathogens, owing to a lack of siderophore production, cannot take these ions for growth (Kloepper et al. 1980).

2.6 Induction of host resistance

Plant growth promoting rhizobacteria can protect plants against pathogens using induction of systemic resistance (ISR) (Sikora 1992). P. fluorescens with stimulating ISR can prevent the early penetration of Heterodera schachtii to roots (Oostendorp and Sikora 1989). The ISR stimulation by Bacillus subtilis leads to the protection of cotton plants against Meloidogyne incognita and Meloidogyne arenaria. The ISR stimulation by Pseudomonas putida and S. marcescens inhibited cucumber Fusarium wilt caused by F. oxysporum f.sp. cucumerinum. The application of Pseudomonas sp. in plants leads to systematic protection against F. oxysporum f.sp. dianthi (David et al. 2018). Flavimonas oryzihabitans, S. marcescens, and Bacillus pumilus have developed ISR against P. syringae pv. lachrymans (David et al. 2018).

The direct promotion of plant growth by plant growth promoting bacteria through the production of phytohormones has been called phytostimulation (Bloemberg and Lugtenberg 2001). The enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase is a phytostimulation that is the most studied one. Some bacterial endophytes producing ACC deaminase have been shown to enhance plant growth, such as Arthrobacter spp., Bacillus spp., P. putida, Rhodococcus spp. (Belimov et al. 2001; Sziderics et al. 2007), and Streptomyces spp. (Palaniyandi et al. 2014; Jaemsaeng et al. 2018). The bacterial strains producing other plant hormones, including indole-3-acetic acid (IAA), jasmonates, and abscisic acid, may also contribute to plant growth stimulation (Patten and Glick 2002; Forchetti et al. 2007). IAA is synthesized by different species of Streptomyces, such as S. violaceus, S. griseus, S. exfoliate, S. coelicolor, and S. lividans (Manulis et al. 1994). Also, IAA in S. atrovirens activates growth promoting bacteria in groundnut and several crops (Reddy et al. 2016).

3 Reduction in the population of biocontrol agents

Phytopathogens may significantly alleviate the growth of biocontrol agents by using the nutrition resources within their occupied spaces more rapidly as well as by modifying their efficacy. This was found in several fungal root pathogens which can colonize the wheat rhizosphere despite the presence of P. fluorescens biocontrol agent (Mazzola and Cook 1991). Decline in the population of P. fluorescens occurs in the existence of some Pythium species. In this instance, infection by Pythium species leads to the limitation of the root surface which is available for P. fluorescens colonization and to the reduction of population of potential antagonists. Fedi et al. (1997) reported that a plant pathogenic P. ultimum with modification of gene expression of P. fluorescens tends to decrease biocontrol agent population. The competition in the rhizosphere for nutrients released from root wounds caused by P. ultimum was limited by the reduction of population size. Because of the importance of microbial community in number and diversity, competition and microorganism–microorganism interactions may also happen in phyllosphere (Vorholt 2012). On the other hand, existence of these microbial communities may also impress the efficacy of BCAs. Understanding the rhizosphere, phyllosphere, and endosphere microbial community structure and their interactions in these niches can contribute to the betterment of biocontrol (Bardin et al. 2015).

4 Improving the biocontrol agent effects

The use of combinations of BCAs may be a better method for developing biocontrol positive effects (Duffy and Weller 1995). Combined biocontrol agents with high level of biocontrol protection have been investigated for better efficacy and prevention of several phytopathogens (Mihajlović et al. 2017). It has been confirmed that natural prevention of Fusarium wilt in France (Châteaurenard soil) was related to the different mechanisms in which multiple microorganisms singly or together restricted the pathogen activation (Alabouvette et al. 1998). However, given that the application of biological control against soilborne pathogens will not be a good replacement of methyl bromide fumigation, these two methods could act together in integrated pest management (Akrami et al. 2011).

5 Biological control in Iran

A complete list of all pathogens and the antagonists used against them is provided in Table 1. Results showed that most studies were conducted in vitro and in greenhouse conditions, and a few cases were carried out in the farm condition in Iran. Bacterial strains belonging to 24 genera, Achromobacter, Acinetobacter, Azotobacter, Bacillus, Beauveria, Bradyrhizobium, Brochothrix, Burkholderia, Enterobacter, Erwinia, Escherichia, Flavobacterium, Lactobacillus, Mesorhizobium, Paenibacillus, Pantoea, Pasteuria, Pseudomonas, Rhizobium, Serratia, Sphingomonas, Sporolactobacillus, Stenotrophomonas, and Streptomyces, have been used in various studies. Also, fungal strains belonging to 27 genera, Acremonium, Alternaria, Arthrinium, Arthrobotrys, Aspergillus, Chaetomium, Cladobotryum, Coniothyrium, Embellisia, Fusarium, Gliocladium, Glomus, Hypsizygus, Lecythophora, Metarhizium, Paecilomyces, Penicillium, Periconia, Piriformospora, Pleurotus, Pythium, Scopulariopsis, Sebacina, Talaromyces, Trichoderma, Trichothecium, and Verticillium, have been applied in Iranian studies against different plant pathogens. Also, strains of ten genera, Candida, Galactomyces, Hanseniaspora, Metschnikowia, Meyerozyma, Pichia, Rhodotorula, Saccharomyces, Torulaspora, and Zygoascus, which belong to the yeast have been used for controlling the phytopathogens in Iran. The bacterial strains related to different species of Pseudomonas and Bacillus and fungal strains related to Trichoderma species had the greatest efficiency in biological control of different plant pathogens in Iran. These antagonists have been mostly used for biological control of fungi, bacteria, and nematodes, respectively.

Table 1

List of pathogens, hosts, and antagonists with procedures based on published research works in Iran from 1992 to 2018

PathogensHostAntagonistsProcedureRef.
Rhizoctonia solaniBeanGliocladium sp.In vitro and greenhouseBazgir et al. (1992)
Athelia rolfsii (Sclerotium rolfsii)GroundnutTrichoderma harzianumGreenhouseAsghari and Myee (1992)
Fusarium solaniAppleT. koningii, T. viride, T. harzianum, and T. virens (Gliocladium virens)GreenhouseKarampour and Okhovat (1992)
Colletotrichum coccodesPotatoTrichoderma spp.In vitroOkhovat et al. (1994)
R. solaniRiceT. koningii, T. viride, T. harzianum, and T. virensFieldIzadyar and Padasht (1994)
R. solaniRiceTrichoderma sp.In vitroPourabdullah and Binesh (1994)
Phytophthora erythrosepticaPotatoT. harzianum, T. viride, and T. koningiiIn vitroZafari et al. (1994)
R. solaniBeanT. viride, T. harzianum, and T. virensGreenhouseBazgir et al. (1994a)
R. solaniBeanT. viride, T. harzianum, and T. virensFieldBazgir et al. (1994b)
Scelotinia sclerotiorumEggplantT. reesei, T. hamatum, T. longibrachiatum, T. koningii, T. viride, T. virens, and Gliocladium sp.In vitroAmir-Sadeghi et al. (1994)
Macrophomina sp. and Rhizoctonia sp.SoybeanBacillus subtilisIn vitro and greenhouseSanei and Ghobadi (1995)
Heterodera schachtiiSugar beetPaecilomyces farinosusIn vitroAhmadi et al. (1995a)
H. schachtiiSugar beetF. solaniIn vitroAhmadi et al. (1995b)
H. schachtiiSugar beetAcremonium spp., Embellisia chlamydospora, Fusarium spp., P. lilacinus, Scopulariopsis brevicaulis, Verticillium chlamydosporium, and Verticillium lecaniiIn vitroHojjat Jalali and Coosemans (1995)
Tilletia laevisCucumberT. virideGreenhousePeyghami and Babadoost (1996)
T. controversaWheatT. virideGreenhousePeyghami and Babadoost (1996)
F. solaniChickpeaT. koningii, T. viride, T. harzianum, and T. virensGreenhouseOkhowat and Karampour (1996)
M. javanicaPasteuria penetransGreenhouseDamadzadeh et al. (1996)
M. javanica, M. incognita, and M. arenariaP. penetransIn vitroAmeri et al. (1996)
Macrophomina phaseolina and R. solaniSoybeanB. subtilisIn vitroSanei and Ghobadi (1996)
H. schachtiiSugar beetE. chlamydospora, Acremonium spp., S. brevicaulis, P. lilacinus, Fusarium spp., V. chlamydosporium, and V. lecaniiIn vitroHojjat-Jalali and Coosemans (1995)
Pythium ultimumChickpeaT. viride and T. virensFieldShahriary et al. (1996)
M. javanicaTomatoP. lilacinusGreenhouseFatemy (1996)
H. schachtiiSugar beetP. farinosusIn vitroAhmadi et al. (1996a)
H. schachtiiSugar beetF. solaniIn vitroAhmadi et al. (1996b)
R. solani, Colletotrichum coccodes, and Phytophthora drechsleriTrichoderma spp. and Gliocladium sp.In vitroOkhovat (1997)
H. schachtiiBeetPaecilomyces fumosoroseusGreenhouseFatemy and Ahmadian Yazdi (1997)
F. o. f.sp. cucumerinumCucumberT. harzianumGreenhousePeyghami and Nishabouri (1998)
A. rolfsii (S. rolfsii)GroundnutT. aureoviride, T. hamatum, T. longibrachiatum, T. harzianum, T. virensIn vitroMirhosaini et al. (1998)
R. solani, Bipolaris sorokiniana, and Fusarium culmorumWheatPenicillium polonicumGreenhouseMansoori (1998)
Ph. capsiciPepperTrichoderma sp. and Gliocladium sp.In vitroBehboodi et al. (1998)
P. ultimumPythium oligandrumIn vitroRahnama and Cooke (1998)
Pythium butleriAspergillus nigerIn vitroRouhani and Safari 1998
Mauginiella scaettaeDate palmT. koningii and T. virideFieldShetab-Booshehri et al. (1998)
Xanthomonas translucens pv. cerealisWheatPantoea agglomerans and Pseudomonas fluorescensGreenhouseMarefat and Rand Rahimian (1998)
F. o. f.sp. lycopersiciTomatoT. harzianum and T. virideGreenhouseNiknejad et al. (2000)
Erwinia amylovoraPearErwinia herbicola and P. fluorescensIn vitro, greenhouse, and fieldAhmadi et al. (2000)
S. sclerotiorumAubergineT. harzianum, T. virens, T. koningii, Trichoderma pseudokoningii, and Gliocladium deliquescensIn vitro and greenhouseOmrani et al. (2000)
M. phaseolinaSoybeanT. viride, T. koningii, and T. harzianumIn vitroGhaffarian et al. (2000)
R. solaniRiceT. viride, T. koningii, and T. harzianumFieldIzadyar et al. (2000a)
Verticillium dahliaeCottonTalaromyces flavusIn vitro and greenhouseNaraghi et al. (2000)
V. dahliaeCottonPseudomonas sp. and Bacillus sp.In vitroAzad Disfani et al. (2000)
R. solaniSugar beetT. harzianum, T. viride, and T. virensIn vitro and greenhouseShahiri Tabarestani et al. (2000)
R. solaniRiceT. harzianum, T. viride, T. koningii, and T. virensIn vitroIzadyar et al. (2000b)
R. solaniRiceT. harzianum, T. viride, and T. virensIn vitro and greenhouseNiknejad-Kazempour et al. (2000)
Neofusicoccum mangiferaeCitrusT. harzianum, T. virens, T. koningii, and T. longibrachiatumIn vitroTaheri et al. (2000)
S. sclerotiorumMulberryT. harzianum, T. viride, T. aureoviride, T. koningii, T. saturniporum, T. pseudokoningii, and T. longibrachiatumIn vitroMerat et al. (2000)
Fusarium spp., Sclerotium cepivorum, Pythium spp., and R. solaniOnionT. harzianum and T. virideGreenhousePeyghami (2001)
R. solaniRiceT. harzianum, T. viride, and T. virensIn vitro and greenhouseNiknejad Kazempour et al. (2002)
Gaeumannomyces graminis var. triticiWheatT. harzianum and T. virideGreenhouseForoutan et al. (2002)
F. avenaceum, F. graminearum, F. culmorum, F. moniliforme, F. oxysporum, F. solani, F. semitectum, F. sambucinum, F. proliferatum, and F. tricinctumWheatP. fluorescens, P. syringae, P. putida, P. cichorii, P. aeruginosa, P. aureofaciens, and P. viridiflavaIn vitroMostofizadeh-Ghalamfarsa et al. (2002)
G. graminis var. triticiWheatPseudomonas spp.In vitro and greenhouseSedaghatfar et al. (2002)
G. graminis var. triticiWheatT. harzianum and T. virideIn vitro and greenhouseForoutan et al. (2002)
F. graminearum, F. moniliforme, F. nygamai, F. oxysporum, F. proliferatum, F. sambucinum, F. semitectum, F. solani, and F. tricinctumWheatPseudomonas spp.In vitroMostofizadeh-Ghalamfarsa et al. (2002)
F. o. f.sp. melonisMelonStreptomyces sp., T. harzianum, T. virens, and T. virideIn vitro and greenhouseAshrafizadeh et al. (2002)
M. javanicaTomatoP. lilacinusGreenhousePakniat and Banihashemi (2002)
Ph. drechsleriCucurbitStreptomyces sp.In vitroHeidari Faroughi et al. (2002)
F. graminearumWheatStreptomyces sp., Pseudomonas sp., and Bacillus sp.In vitroNorouzian et al. (2002)
Sclerotinia minorSunflowerT. harzianum, T. viride, and T. virensIn vitroAbdollahzadeh et al. (2003)
Ph. drechsleriCantaloupeT. harzianum, T. viride, and T. virensGreenhouseHeidari Faroughi et al. (2004)
Tilletia indicaWheatT. longibrachiatum, T. harzianum, and T. virideGreenhouseBeeazar and Torabi (2004)
F. o. f.sp. ciceriChickpeaT. longibrachiatumGreenhouseKarimi et al. (2004a)
F. o. f.sp. ciceriChickpeaBacillus sp.In vitroKarimi et al. (2004b)
F. o. f.sp. dianthiCarnationP. fluorescens and Bacillus sp.GreenhouseKarimi et al. (2004c)
R. solaniChickpeaT. harzianum, T. viride, and T. virensGreenhouseMohammadi et al. (2004)
B. sorokinianaWheatB. subtilis, P. fluorescens, and Bacillus pumilusGreenhouseMohammadi et al. (2004)
M. phaseolinaSoybeanT. harzianumGreenhouseBarari et al. (2004)
Armillaria melleaCladobotryum polypore, C. varium, C. dendroides, and C. verticillatumIn vitroAsef and Mohammadi-Gholtapeh (2004)
T. laevisWheatB. subtilisGreenhouseKhodaygan et al. (2004)
B. sorokinianaWheatTrichoderma sp. and Streptomyces sp.GreenhouseSalehpour et al. (2004)
R. solaniRiceP. fluorescensField and greenhouseNiknejad-Kazempour (2004)
F. moniliformeRiceP. fluorescensIn vitroNiknejad-Kazempour et al. (2004)
R. solaniRiceBacillus cereus and P. fluorescensIn vitroSajjadi et al. (2004)
Pyricularia griseaRiceBacillus megaterium, B. subtilis, Bacillus circulans, and P. fluorescensFieldPadasht-Dehkaei et al. (2004)
F. oxysporumOnionB. cereus, B. subtilis, and P. fluorescensFieldSaberi-Riseh et al. (2004)
Ph. citrophthoraPistachioP. fluorescensFieldSaberi-Riseh et al. (2004)
P. ultimumCucumberB. subtilis, Trichoderma sp., and P. fluorescensGreenhouseTaghinasab et al. (2004)
F. oxysporumBasalB. cereus and P. fluorescensGreenhouse and fieldRamezani-Baghmishezad et al. (2004)
S. sclerotiorumRapeseedBacillus spp.In vitroAkbari-Kiarodi et al. (2004)
R. solaniCottonBacillus sp. and P. fluorescensIn vitro and greenhouseHeydari et al. (2004)
Gibberella fujikuroiRiceT. virens, T. harzianum, Bacillus sp., B. subtilis, and B. circulansIn vitro and greenhousePadasht Dehkaei et al. (2004)
Xanthomonas axonopodis pv. citriCitrusP. fluorescens and P. putidaIn vitro and greenhouseKhodakaramian (2004)
F. oxysporumChickpeaB. subtilis and P. fluorescensGreenhouse and fieldJamali et al. (2004)
R. solaniSugar beetB. subtilisIn vitro and greenhouseShahiri et al. (2005)
B. sorokinianaWheatB. subtilis and P. fluorescensIn vitro and greenhouseMohammadi et al. (2005)
Ph. capsiciPepperT. viride, T. koningii, T. harzianum, and T. virensIn vitro and greenhouseBehboudi et al. (2005)
S. sclerotiorumRapeseedB. cereus, B. subtilis, and P. fluorescensIn vitroAkbari et al. (2005a,b)
F. graminearumWheatP. aeruginosa, B. subtilis, and P. fluorescensGreenhouseForoutan et al. (2005)
V. dahliaeStreptomyces plicatus and Frankia sp.In vitroShahidi Bonjar and Aghighi (2005)
Pseudomonas tolaasiiAgaricus bisporusP. fluorescensIn vitro and greenhouseKhabbaz Jolfaei et al. (2005)
R. solani, F. oxysporum, F. solani, and C. coccodesPotatoT. harzianumGreenhouse and fieldSoltani et al. (2006)
S. sclerotiorumSunflowerT. harzianum, T. viride, and T. virensIn vitroAbdollahzadeh et al. (2006)
M. javanica and M. incognitaPistachioP. penetransGreenhouseKarimipourfard and Damadzadeh (2006)
R. solani, F. oxysporum, F. solani and Lasiodiplodia sp.MulberryP. fluorescens and Bacillus spp.In vitroNiknejad-Kazempour et al. (2006)
Ph. cactorumAppleP. fluorescens and B. subtilisGreenhouseFarzaneh et al. (2006)
F. o. f.sp. tuberosiPotatoP. fluorescensGreenhouseKhorasani-Aghazadeh et al. (2006)
R. solaniCommon beanBurkholderia cepaciaGreenhouseAhmadzadeh et al. (2006b)
Ascochyta rabieiChickpeaT. harzianumGreenhouseBahrami et al. (2006)
F. graminearumWheatStreptomyces sp., P. fluorescens, and B. subtilisIn vitro and greenhouseNourozian et al. (2006)
Bipolaris spiciferaWheatBacillus sp. and P. fluorescensGreenhouseBehdani et al. (2006)
R. solaniBeanP. fluorescensGreenhouseAfsharmanesh et al. (2006)
M. phaseolina, R. solani, Ph. nicotianae var. parasitica, Pythium sp., and Fusarium sp.Soybean, pistachio, bean, pepper, and cucumberPseudomonas spp.In vitroAhmadzadeh et al. (2006a)
V. dahliaeCucumberB. subtilis, P. fluorescens, and B. pumilusGreenhouseAhmadifar et al. (2006)
R. solaniRiceP. fluorescensIn vitroKazemzadeh et al. (2006)
T. laevisWheatP. putida and P. fluorescensGreenhouseKhodaygan et al. (2006)
Ph. sojaeSoybeanPseudomonas spp.GreenhouseZebarjad et al. (2006)
R. solaniRiceB. cereus, B. subtilis, and P. fluorescensGreenhouseSajadi et al. (2006)
M. phaseolinaMelonT. harzianum and T. virensIn vitro and glasshouseEtebarian (2006)
F. graminearumWheatB. cereus, B. subtilis, P. fluorescens, and E. herbicolaGreenhouse and fieldAlimi et al. (2006)
Ralstonia solanacearum and Pectobacterium carotovorum subsp. carotovorumPistachio, olive, potato, and cottonS. plicatus and Frankia sp.In vitroShahidi Bonjar et al. (2006)
V. dahliaePistachio, olive, potato, and cottonS. plicatus and Frankia sp.In vitroAghighi et al. (2006)
Sclerotinia sclerotiorumSunflowerConiothyrium minitansIn vitroPourmehdi Alamdarlou et al. (2006)
Ustilago hordeiBarleyBacillus licheniformis, B. cereus, and P. fluorescensFieldEtebarian et al. (2007)
S. sclerotiorumCanolaP. fluorescensIn vitro and greenhouseBehnam et al. (2007)
Ophiostoma novo-ulmiElmT. harzianum and T. virensIn vitroIraqi et al. (2007)
G. graminis var. triticiWheatT. virens, T. koningiopsis, T. koningii, and T. viridescensIn vitro and greenhouseMehrabi Koshki et al. (2007)
R. solaniBeanB. subtilis and P. fluorescensGreenhousePeighamy-Ashnaei et al. (2007)
R. solaniRapeB. cepaciaIn vitroSharifi-Tehrani et al. (2007)
Ph. cactorumAppleP. fluorescensIn vitro and greenhouseFarzaneh et al. (2007)
P. griseaRiceB. circulans, B. megaterium, B. subtilis, and P. fluorescensFieldPadasht and Izadyar (2007)
F. o. f.sp. dianthiCarnationB. cereus, B. subtilis, and P. fluorescensIn vitro and greenhouseKarimi et al. (2007)
R. solaniColzaP. fluorescensIn vitro and greenhouseSarani et al. (2008b)
S. sclerotiorumTobaccoT. citrinoviride, T. harzianum, T. atroviride, T. virens, T. koningii, T. ghanense, and T. longibrachiatumIn vitro and greenhouseSajadi and Asemi (2008)
M. phaseolinaEggplantT. hamatum, T. harzianum, T. polysporum, and T. virideIn vitro and fieldRamezani (2008)
M. javanicaTomatoT. harzianumIn vitroGolzary et al. (2008b)
A. melleaFruit treesT. harzianum and T. virensIn vitroAsef et al. (2008)
Penicillium digitatumOrangePseudomonas spp.In vitroZamani et al. (2008a)
P. digitatumOrangeP. agglomeransGreenhouseZamani et al. (2008b)
F. o. f.sp. tuberosePotatoBrevibacillus brevis, B. subtilis, and P. fluorescensGreenhouseKhorasani et al. (2008)
Colletotrichum gloeosporioidesCitrusB. subtilisIn vitroSalari et al. (2008a)
Penicillium expansumAppleT. virensGreenhouseTabe-Bordbar et al. (2008b)
Aspergillus flavusPistachioB. subtilis, B. licheniformis, B. cereus, and P. fluorescensIn vitroHaghdel et al. (2008a,b)
M. javanicaTomatoP. fluorescensGreenhouseMokhtari et al. (2008)
M. javanicaTomatoP. fluorescensIn vitroGolzary et al. (2008a)
Magnaporthe salviniRiceP. fluorescensIn vitroAhmaddeh et al. (2008)
F. oxysporumPotatoP. putida, P. fluorescens, and P. aeruginosaFieldOmmati et al. (2008)
P. digitatumCitrusT. viride, P. fluorescens, and B. subtilisIn vitroZamani et al. (2008c)
F. solani and P. ultimumB. subtilisIn vitroSelselehzakeri et al. (2008)
R. solaniSugar beetT. harzianum and T. virideFieldSafaee et al. (2008)
R. solaniSugar beetP. oligandrumIn vitro and greenhouseSalari et al. (2008b)
R. solaniCanolaP. fluorescens, B. cepacia, B. subtilis, and Streptomyces sp.In vitro and greenhouseSarani et al. (2008a)
Penicillium solitumAppleT. viride and T. virensGreenhouseTabe Bordbar et al. (2008a)
O. novo-ulmiElmB. subtilisIn vitroIragi et al. 2008
R. solaniRiceT. atroviride, T. harzianum, and T. virensIn vitroKhalili and Sadravi (2008)
Botrytis maliAppleCandida membranifaciensGreenhouseAlavifard et al. (2008a)
Botrytis cinereaAppleC. membranifaciens, Rhodotorula mucilaginosa, and Meyerozyma guilliermondii (Pichia guilliermondii)In vitro and greenhouseAlavifard et al. (2008b)
P. expansumAppleC. membranifaciensIn vitro and greenhouseGholamnejad et al. (2008)
S. sclerotiorumPotatoT. ceramicum , T. koningii, T. koningiopsis, T. virens, T. viridescens, T. orientalis, and T. atrovirideIn vitro and greenhouseOjaghian et al. (2008)
G. graminis and M. phaseolinaPiriformospora indica and Sebacina vermiferaIn vitroAbbaszadeh and Mohammadi Goltapeh (2008a)
M. phaseolinaSoybeanT. harzianum, T. viride, P. indica, and S. vermiferaIn vitro and greenhouse and fieldAbbaszadeh and Mohammadi Goltapeh (2008b)
Pyricularia oryzaeRiceStreptomyces spp.In vitro and greenhouseEbrahimi-Zarandi et al. (2008)
P. expansumAppleP. fluorescensIn vitro and greenhouseKhazaee et al. (2008)
Ph. nicotianaeP. fluorescensIn vitro and greenhouseNazerian et al. (2008)
S. sclerotiorumCanolaB. subtilisIn vitroNasrolah Nejad and Rahnama (2008)
P. syringae pv. tomatoTomatoP. fluorescensIn vitroMousavi et al. (2008a)
Clavibacter michiganensis subsp. michiganensisTomatoP. fluorescensIn vitroMousavi et al. (2008b)
E. amylovoraPearP. fluorescens and Pantoea sp.In vitroMirzaie et al. (2008)
M. phaseolinaSoybeanT. harzianumIn vitroMontazernia et al. (2008)
S. sclerotiorumCanolaP. fluorescens and B. subtilisIn vitro and greenhouseMansouripour et al. (2008)
G. graminis var. triticiWheatAzotobacter isolatesIn vitroMaghsodloo et al. (2008)
B. cinereaAppleB. subtilis, Pichia membraniciens, and Candida guilliermondiiIn vitro and greenhouseZangoie et al. (2008)
X. axonopodis pv. citriCitrusP. fluorescensGreenhouseKhodakaramian et al. (2008)
F. graminearum, R. solani AG4, R. solani AG5, M. phaseolina, and Ph. cactorumWheat, sugar beet, potato, soyabean, and appleT. hamatum, T. harzianum, T. virens, and Trichoderma sp.In vitroHajieghrari et al. (2008)
G. graminis var. triticiWheatT. koningiopsis, T. brevicompactum, and T. viridescensGreenhouseZafari et al. (2008)
M. javanicaTomatoT. harzianumIn vitro and greenhouseMaleki Ziyarati et al. (2009)
M. phaseolinaMelonP. fluorescens and P. putidaIn vitro and greenhouseKheiri et al. (2009)
H. schachtiiSugar beetT. harzianum and T. virensIn vitro and greenhouseMahdikhani Moghadam et al. (2009)
S. sclerotiorumCanolaT. harzianum and T. virensIn vitroNasrolah Nejad et al. (2009)
M. javanicaTomatoT. harzianumGreenhouseZiarati et al. (2009)
T. laevisWheatT. koningii, T. brevicompactum, T. harzianum, and T. virensFieldMehrabi Koshki et al. (2009)
R. solaniCommon beanP. fluorescensGreenhouseAhmadzadeh and Tehrani (2009)
B. cinereaAppleP. fluorescens and B. subtilisGreenhousePeighami-Ashnaei et al. (2009a)
S. sclerotiorumSunflowerP. fluorescensGreenhouseAshofteh et al. (2009)
Xanthomonas campestris pv. malvacearumCottonP. aeruginosaGreenhouseFallahzadeh-Mamaghani et al. (2009)
R. solaniBeanB. subtilis and P. fluorescensIn vitroPeighami-Ashnaei et al. (2009b)
R. solaniCommon beanB. cepaciaIn vitro and greenhouseAhmadzadeh et al. (2009)
P. expansumAppleSaccharomyces cerevisiaeIn vitroGholamnejad et al. (2009)
H. schachtiiSugar beetPleurotus ostreatus, P. sajor-caju, P. florida, P. flabellatus, P. eryngii, and Hypsizygus ulmariusIn vitro and greenhousePalizi et al. (2009)
P. expansumAppleR. mucilaginosa and M. guilliermondiiIn vitroGholamnejad et al. (2009)
V. dahliaeCottonGlomus etunicatum, G. intraradices, and G. versiformeGreenhouseNorouzi et al. (2009)
Meloidogyne spp.Paecilomyces lilacinusGreenhouseBoromand et al. (2010)
F. oxysporum, R. solani, M. phaseolina, and Pythium sp.Faba beanPseudomonas sp.In vitro and greenhouseGolpayegani et al. (2010)
R. solaniRiceT. harzianum, T. atroviride, and T. virensIn vitro, greenhouse, and fieldNaeimi et al. (2010)
Phytophthora sojaeT. virens, T. orientalis, T. brevicompactum, T. atroviride, T. ceramicum and T. asperellumIn vitroAyoubi et al. (2010)
B. sorokinianaWheatP. fluorescensIn vitro and greenhouseRanjbar Sistani et al. (2010)
G. fujikuroiRiceT. harzianum and T. virensIn vitro and greenhouseRoodgar et al. (2010)
Pythium aphanidermatumCucumberB. subtilis and B. licheniformisIn vitro and greenhouseSafari Asl et al. (2010)
B. cinereaTomatoT. harzianum, T. arundinaceum, T. viridescens, T. atroviride, and T. koningiiIn vitro and greenhouseEivazi et al. (2010)
P. expansumAppleB. subtilisIn vitro and greenhouseEmadi et al. (2010)
Phytophthora drechsleriCantaloupePseudomonas fluorescens, P. putida and P. aeruginosaIn vitro and greenhouseTabarraie et al. (2010)
P. expansumAppleR. mucilaginosaIn vitro and greenhouseGolamnejad et al. (2010)
Penicillium italicumOrangeM. guilliermondiiIn vitro and greenhouseGhasemi Sardareh et al. (2010)
Verticillium albo-atrumTomatoT. flavusIn vitro and greenhouseNaraghi et al. (2010)
F. o. f.sp. ciceriChickpeaB. subtilis, P. aeruginosa, and P. putidaIn vitroKarimik Amini et al. (2010)
B. sorokinianaWheatGlomus fasciculatum and B. subtilisGreenhouseHashemi Alizade et al. (2010)
F. o. f.sp. radicis-cucumerinumCucumberB. subtilisGreenhouseYousefi et al. (2010)
S. sclerotiorumPotatoT. ceramicum, T. koningii, T. koningiopsis, T. viridescens, T. virens, and Coniothyrium minitansIn vitroOjaghian et al. (2010)
Sclerotinia sclerotiorumSunflowerPseudomonas fluorescensIn vitro and greenhouseKhezri et al. (2010)
Sclerotium cepivorumGarlicBacillus spp.In vitroBabaei Nasir et al. (2010)
Fusarium oxysporum f.sp. gladioli GladiolusGarlicTrichoderma spp.In vitroBagheri et al. (2010)
F. oxysporum and F. solaniChickpeaT. harzianum and T. asprellumIn vitro and greenhouseAkrami and Ibrahime (2010)
M. phaseolinaSunflowerB. subtilisIn vitro and greenhouseIraqi and Rahnama (2011)
R. solaniCanolaB. cepaciaIn vitro and greenhouseSarani et al. (2010)
P. carotovorumPotatoP. putida, P. aeruginosa, and P. fluorescensFieldKhodakaramian and Zafari (2010)
X. axonopodis pv. citriCitrusP. fluorescens, P. viridiflava, and P. syringaeIn vitroMontakhabi et al. (2010)
G. graminis var. triticiWheatB. subtilis, B. pumilus, P. fluorescens, P. putida, P. aeruginosa, and Chromobacteria sp.In vitro and greenhouseBabaeipoor et al. (2011)
Phoma lingamRapeseedB. subtilis and T. koningiiIn vitro and greenhousePanjehkeh et al. (2011)
H. schachtiiSugar beetT. harzianum, T. virens, and B. subtilisFieldMahdikhani Moghadam and Rouhani (2011)
F. oxysporumLentilP. fluorescensGreenhouseAkrami et al. (2011)
F. culmorumB. subtilisGreenhouseKhezri et al. (2011)
S. sclerotiorumSunflowerP. fluorescensGreenhouseHeidari-Tajabadi et al. (2011)
P. italicum and P. digitatumCitrusP. syringae and Candida famataGreenhouseNasrollahi Omran et al. (2011)
G. graminis var. triticiWheatP. fluorescensGreenhouseBagheri et al. (2011)
P. expansumAppleR. mucilaginosaIn vitroGholamnejad et al. (2011)
Phytophthora parasitica and Ph. citrophthoraPistachioStreptomyces sp.In vitro and greenhouseSalari et al. (2011)
Ph. drechsleriSugar beetT. asperellum, T. atroviride, T. harzianum, and T. virensGreenhouseMoayedi and Mostowfizadeh-Ghalamfarsa (2011)
M. javanicaOliveP. fluorescens and P. putidaGreenhouseKhalighi and Khodakaramian (2012)
Fusarium solaniPotatoT. brevicompactum, T. longibrachiatum and T. asperellumIn vitro and greenhouseOmmati and Zaker (2012)
M. javanicaTomatoT. harzianumGreenhouseNaserinasab et al. (2012)
P. carotovorumPotatoPseudomonas spp.In vitro and greenhouseGhods-Alavi et al. (2012)
P. griseaRiceT. harzianumGreenhouseRaeesi et al. (2012a)
B. cinereaT. harzianumIn vitro and greenhouseRaeesi et al. (2012b)
R. solaniRiceP. fluorescens and P. aeruginosaIn vitro and greenhouseKazemzadeh et al. (2012)
Ph. sojaeSoybeanBradyrhizobium japonicum, T. spirale, T. orientale and T. brevicompactumIn vitro and greenhouseAyoubi et al. (2012)
P. aphanidermatumCucumberT. longibrachiatum and T. atrovirideGreenhouseAle Aghaee et al. (2012)
Ph. parasiticaCitrusStreptomyces sp.In vitro and greenhouseSadeghi (2012)
F. o. f.sp. lycopersiciTomatoStreptomyces sp.In vitroFadaei et al. (2012)
F. solani f.sp. pisiChickpeaT. harzianum and T. virideIn vitro and greenhouseAfrousheh et al. (2012a)
Fusarium subglutinansCucumberStreptomyces spp.In vitro Sadeghi and Hatami (2012)
F. solani f.sp. pisiPeaT. harzianum and T. virideIn vitro and greenhouseAfrousheh et al. (2012b)
Phytophthora sojaeSoybeanT. orientals, T. brevicompactum and T. spirale and Bradyrhizobium japonicumIn vitro and greenhouseNajmeh et al. (2012)
Rosellinia necatrixT. flavusIn vitroMasudi and Shahidi (2012)
P. aphanidermatumCucumberT. virens, T. harzianum, and T. atrovirideIn vitro and greenhouseHosseyni et al. (2012a)
R. solani, M. phaseolina, F. graminearum, and S. sclerotiorumT. virideIn vitroSoofi et al. (2012)
Bipolaris australiensis and B. cinereaSaffronT. virens, T. harzianum, and T. koningiiIn vitroRoohabadi et al. (2012)
F. graminearumWheatT. harzianum and T. virensFieldBaghani et al. (2012)
F. o. f.sp. radicis-cucumerinumCucumberT. harzianumIn vitro and greenhouseJavanshir Javid et al. (2012)
Monosporascus cannonballusMuskmelonT. atroviride, T. harzianum, and T. virensIn vitro and greenhouseKeshavarzi et al. (2012a)
F. graminearumWheatT. harzianum and T. virensFieldBaghani et al. (2012)
R. solani and F. solani f.sp. tuberoseSugar beetP. putidaIn vitroNazari et al. (2012)
Alternaria alternataPotatoT. viride, T. orientalis, T. arundinaceum, and T. harzianumIn vitro and greenhouseNasiri et al. (2012)
P. aphanidermatumCucumberBacillus sp. and B. subtilisGreenhouseHosseyni et al. (2012b)
F. solani and R. solaniStreptomyces sp.In vitroVasebi and Dehnad (2012)
B. cinereaAppleHanseniaspora occidentalisIn vitroAzadrooh et al. (2012)
A. flavusPistachioT. harzianum and T. longibrachiatumIn vitroChegini et al. (2012)
M. cannonballusCucumis melonT. harzianum, T. virens, T. atroviride, and Chaetomium globosumIn vitroKeshavarzi et al. (2012b)
M. javanicaPenicillium griseofulvum, Penicillium chrysogenum, and Penicillium coprophilumIn vitroKarkhaneh et al. (2012)
V. albo-atrum, F. oxysporum, and R. solaniPotatoT. flavusIn vitroNaraghi et al. (2012a)
R. solaniCommon beanStreptomyces microflavusIn vitro and greenhouseMoazenian et al. (2012b)
A. flavusPistachioT. harzianum and T. koningiiIn vitroKahnooji et al. (2012)
Ph. drechsleriPistachioT. longibrachiatum and T. harzianumIn vitroMirkhani et al. (2012)
Ph. drechsleriPistachioT. harzianumGreenhouseAlipoor Moghadam et al. (2012)
Paecilomyces variotiiPistachioStreptomyces spp.In vitroAnsari et al. (2012)
P. tolaasiiA. bisporusPseudomonas reactants, Bacillus sp., and P. fluorescensIn vitroTajalipour et al. (2012)
V. albo-atrumPotatoT. flavusGreenhouseNaraghi et al. (2012b)
B. oryzaeRiceT. harzianum, T. atroviride, and T. virensGreenhouseKhalili et al. (2012)
F. solaniBeanT. harzianum and T. virideIn vitro and greenhouseKhodaei et al. (2012)
F. solani, R. solani, F. oxysporum, Pestalotiopsis spp., C. gloeosporioides, and P. digitatumCitrusStreptomyces sp.In vitroNoorizadeh et al. (2012)
P. italicumOrangePichia kluyveriIn vitroGhasemi Sardareh et al. (2012)
R. solaniSugar beetT. harzianumIn vitroGhanbari et al. (2012)
P. expansumAppleTorulaspora delbrueckiiIn vitroEbrahimi et al. (2012a,b)
Magnaporthe oryzaeRiceT. harzianum, T. atroviride, and T. virensIn vitroJavadi et al. (2012)
F. graminearumWheatP. fluorescens, E. herbicola, B. subtilis, and B. cereusIn vitro and greenhouseAlimi et al. (2012)
S. sclerotiorumBeanB. subtilis subsp. spizizenii and Streptomyces acrimyciniIn vitro and greenhouseGholami et al. (2012)
S. sclerotiorumCucumberBacillus sp.In vitroRostami et al. (2012)
G. graminis var. triticiWheatP. fluorescensIn vitro and greenhouseLagzian et al. (2012)
F. oxysporumCucurbitT. harzianum and T. longibrachiatumIn vitroAbdolahy and Parsaiyan (2012)
F. solaniCucurbitT. koningiiIn vitroAbdolahy and Parsaiyan (2012)
V. dahliaePistachioT. harzianum and T. koningiiIn vitroJamdar et al. (2012)
Pratylenchus loosiTeaB. subtilisIn vitroRahanandeh et al. (2012)
M. javanicaCucumberP. fluorescens, B. subtilis, and Pantoea sp.GreenhouseMajzoob et al. (2012)
Meloidogyne javanicaTomatoArthrobotrys oligospora and Paecilomyces lilacinusGreenhouseJamshidnejad et al. (2012)
B. cinereaStrawberryTrichoderma spp.In vitro and greenhouseNaeimi and Zare (2013)
P. aphanidermatumSugar beetTrichoderma erinaceum, T. koningii, T. longibrachiatum, and T. harzianumGreenhouseAbdollahi et al. (2013)
Fusarium oxysporum f. sp. tuberosiPotatoTrichoderma virens and Trichoderma asperellumIn vitro and greenhouseOmmati et al. (2013)
B. sorokinianaWheatG. fasciculatum and P. fluorescensGreenhouseHashemi Alizadeh et al. (2013)
Tylenchulus semipenetransCitrusF. solani, F. oxysporum, P. lilacinus, Cladosporium cladosporioides, and Acremonium strictumGreenhouseChavoshisani et al. (2013)
Aspergillus flavusPistachioTrichoderma harzianum and Trichoderma longibrachiatumIn vitroChegini et al. (2013)
M. javanicaTomatoGlomus mosseae and G. intraradicesGreenhouseGolzari et al. (2013)
A. flavusPistachioB. subtilisIn vitroAfsharmanesh et al. (2013)
Colletotrichum lindemuthianumBeanB. subtilis subsp. subtilis, B. atrophaeus, B. tequilensis, B. subtilis subsp. spizizenii, Streptomyces cyaneofuscatus, S. flavofuscus, S. parvus, and S. acrimyciniIn vitro and greenhouseGholami et al. (2013)
P. aphanidermatumTarragonT. asperelloidesIn vitroPakdaman et al. (2013)
E. amylovoraApple, pear, and quinceP. fluorescens, P. agglomerans, P. putida, and Serratia marcescensFieldGerami et al. (2013)
F. culmorumWheatPseudomonas spp.GreenhouseMadloo et al. (2013)
P. loosiTeaP. fluorescensIn vitroRahanandeh et al. (2013)
V. dahliaeCottonB. subtilis, Bacillus coagulans, Bacillus polymyxa, and P. fluorescensGreenhouseMansoori et al. (2013)
F. graminearumWheatT. harzianum and T. virideFieldForoutan (2013)
M. phaseolinaSoybeanP. agglomerans, Bacillus sp., and T. harzianumIn vitro and greenhouseVasebi et al. (2013)
Ph. drechsleriCucumberP. fluorescensIn vitro and greenhouseGhafelebashi et al. (2014)
B. cinereaAppleB. subtilis, C. membranifaciens and M. guilliermondiiIn vitro and greenhouseZanguei et al. (2014)
M. oryzaeRiceT. harzianum, T. atroviride, and T. virensIn vitro and greenhouseJavadi et al. (2014)
F. solani f.sp. pisiPeaG. mosseae and G. intraradicesGreenhouseSoharabi et al. (2014)
F. o. f.sp. lycopersiciTomatoT. harzianum and T. virensGreenhouseJalali (2014)
P. tolaasiiMushroomP. reactants, P. putida, P. fluorescens, and B. subtilisGreenhouseTajalipour et al. (2014)
M. javanicaTomatoP. fluorescensIn vitroBagheri et al. (2014)
A. flavusPistachioB. subtilisIn vitroAfsharmanesh et al. (2014)
P. digitatumCitrusB. subtilis, Rhizobium rubi, and P. digitatumIn vitroMohammadi et al. (2014)
Cercospora beticolaSugar beetBacillus sp., Enterobacter sp., and Enterobacter sp.In vitro and greenhouseMousavi Mirak (2014)
M. phaseolinaSoybeanT. harzianumIn vitro and greenhouseKhaledi and Taheri (2014)
R. solanacearumPotatoPaenibacillus polymyxaIn vitro and greenhouseDadjoo et al. (2014)
F. o. f.sp. melonisCantaloupeB. subtilisIn vitroHosseini Haji Abdal et al. (2014b)
F. o. f.sp. melonisCantaloupeT. atroviride and T. harzianumIn vitro and greenhouseHosseini Haji Abdal et al. (2014a)
M. incognitaTeaP. aeruginosa and P. fluorescensIn vitroRahanandeh and Moshaiedy (2014)
P. chrysogenum and B. cinereaStreptomyces griseusIn vitroDanaei et al. (2014)
R. solaniCottonP. aureofaciens and P. fluorescensGreenhouseSamavat et al. (2014)
M. phaseolinaSoybeanT. harzianumFieldBarari et al. (2014)
F. sambucinum, Fusarium subglutinans, Phoma glomerata, and N. mangiferaeCucumberStreptomyces sp.In vitroSadeghi and Hatami (2014)
M. phaseolinaSoybeanP. agglomeransIn vitro and greenhouseVasebi et al. (2015)
M. javanicaTomatoTrichoderma spp.In vitro and greenhouseKavari et al. (2015)
Ph. drechsleriCucumberT. harzianumGreenhouseDelkhah and Behboudi (2015)
M. javanicaTomatoT. harzianum and P. fluorescensGreenhouseMokhtari et al. (2015)
M. javanicaTomatoMetarhizium anisopliae and T. harzianumGreenhouseKhosravi et al. (2015)
F. graminearumWheatP. fluorescensGreenhouseShahbazi et al. (2015)
P. aphanidermatumCucumberP. fluorescensGreenhouseAkbari-Moghadam et al. (2015)
G. graminis var. triticiWheatTrichoderma spp. and T. flavusIn vitroMohammadi and Ghanbari (2015)
S. cepivorumGarlicT. asperellum, T. harzianum, and T. flavusGreenhouseMahdizadehnaraghi et al. (2015)
F. solani, R. solani, and F. oxysporumBeanPseudomonas sp. and Bacillus sp.In vitro and greenhouseFaraji et al. (2015)
R. solaniCottonP. fluorescensGreenhouseAbdollahipuor et al. (2015)
F. o. f.sp. lycopersiciTomatoB. pumilusGreenhouseHeidarzadeh and Baghaee-Ravari (2015)
Meloidogyne spp.KiwifruitPseudomonas chlororaphis subsp. aureofaciens and P. fluorescensGreenhouseBashiri et al. (2015)
Fusarium solani, Rhizoctonia solani, and Fusarium oxysporumBeanPseudomonas sp. and Bacillus sp.In vitro and greenhouseFaraji et al. (2015)
V. dahliaePistachioT. harzianumGreenhouseFotoohiyan et al. (2015)
P. aphanidermatumCucumberG. mosseaeGreenhouseHosseini et al. (2016)
F. oxysporumTomatoP. fluorescensGreenhouseJamali et al. (2016)
B. cinerea, C. cladosporioides, and Aspergillus tubingensisGrapeT. harzianum and T. hamatumIn vitroDavari and Ezazi (2016)
B. cinereaStrawberryB. subtilis and B. licheniformisGreenhouseAmini et al. (2016)
Mycosphaerella rabieiChickpeaT. atroviride, T. virens, and T. atrovirideGreenhouseNaghed et al. (2016)
A. alternata, Alternaria dumosa, Alternaria tenuissima, Alternaria mimicula, Alternaria tomaticola, and C. cladosporioidesTomatoT. harzianum and T. virensGreenhouseBeydaghi et al. (2016)
M. javanicaTomatoG. mosseaeGreenhouseAzami-Sardooie et al. (2016)
F. o. f.sp. lycopersiciTomatoT. harzianumIn vitro and greenhouseBarari (2016)
M. phaseolina, R. solani, S. sclerotiorum, and F. graminearumMelon, melon, canola, and wheatT. harzianumIn vitroAbbasi et al. (2016)
M. phaseolinaSoybeanT. harzianumGreenhouseKhalili et al. (2016)
F. solani f.sp. pisiChickpeaStreptomyces antibioticusGreenhouseSoltanzadeh et al. (2016)
A. rabieiChickpeaP. putida, P. fluorescens, Mesorhizobium ciceri, and Burkholderia multivoransIn vitroAzizpour and Rouhrazi (2016)
R. solaniSugar beetBacillus amyloliquefaciens, B. pumilus, and Bacillus siamensisGreenhouseKarimi et al. (2016)
F. o. f.sp. lycopersiciTomatoB. subtilis and P. fluorescensIn vitro and greenhouseJalali et al. (2016)
A. flavusPistachioB. subtilisIn vitroFarzaneh et al. (2016)
Penicillium crustosum and A. tubingensisGrapePichia membranaefaciensIn vitro and greenhouseRanjbar Chaharborj et al. (2016)
S. sclerotiorum and P. aphanidermatumCucumberPseudomonas spp., Stenotrophomonas spp., and Flavobacterium spp.In vitro and greenhouseBagheri et al. (2016)
X. translucens pv. cerealisWheatPseudomonas spp.Greenhouse and in vitroFallahzadeh-Mamaghani et al. (2016)
F. o. f.sp. cucumerinumCucumberT. flavusGreenhouseShahriari et al. (2016)
M. javanicaTomatoT. harzianumGreenhouseHeidari and Olia (2016)
Agrobacterium tumefaciensTobaccoB. subtilisGreenhouseNazari et al. (2016)
R. solanacearumPotatoP. fluorescensIn vitro and greenhouseHasani and Khodakaramian (2016)
G. graminis var. triticiWheatB. subtilisIn vitro and greenhouseKhezri and Manafi Shabestari (2016)
F. solani f.sp. phaseoliBeanT. hamatum and P. fluorescensIn vitro and greenhouseKhosro-Anjom et al. (2016)
V. dahliaeTomatoB. subtilis, B. pumilus, B. atrophaeus, and Bacillus thuringiensisIn vitro and greenhouseSafdarpour and Khodakaramian (2016)
E. amylovoraAppleP. agglomeransIn vitroFirouzian Bandpey and Rahimian (2016)
F. oxysporumT. harzianum, T. koningii, and T. virensIn vitroHabibi and Rahnama (2016)
F. oxysporum f.sp. lycopersici and M. javanicaTomatoG. mosseaeGreenhouseAmirafzali et al. (2016)
Diplodia bulgaricaAppleArthrinium arundinis, Arthrinium saccharicola, Periconia sp., Penicillium sp., Aspergillus persii, C. globosum, Chaetomium sp., Trichothecium roseum, A. tenuissima, and Alternaria infectoriaIn vitroAlijani et al. (2016)
R. necatrixAppleB. siamensis and B. pumilusIn vitroBinandeh et al. (2016)
F. oxysporumCucumberT. harzianumIn vitroAkhlaghi et al. (2016)
P. aphanidermatumCucumberB. cereus, B. licheniformis, and Bacillus endophyticusIn vitroRezaei et al. (2016)
R. solaniWheatT. citrinovirideIn vitro and greenhouseSharify et al. (2016a)
R. solaniWheatT. asperellumIn vitro and greenhouseSharify et al. (2016b)
P. tolaasiiA. bisporusBrochothrix thermosphacta and Bacillus mycoidesIn vitroAslani et al. (2016)
B. cinereaGrapeT. harzianum and C. membranifaciensIn vitroKasfi et al. (2016a)
A. nigerGrapeT. harzianum and C. membranifaciensIn vitroKasfi et al. (2016b)
H. schachtiiSugar beetT. harzianum, Thalaromyces flavus, F. solani, and V. chlamydosporiumGreenhouseShirazi et al. (2016)
M. phaseolinaMungbeanT. harzianum, T. reesei, A. niger, and B. subtilisGreenhouseShahid and Khan (2016)
Curvularia lunata and Bipolaris sorokinianaWheatAchromobacter xylosoxidansIn vitroBagheri and Ahmadzadeh (2016)
R. solaniTomatoBeauveria bassianaGreenhouseAzadi et al. (2016)
Bipolaris victoriaeRiceT. harzianum, A. tenuissima, Fusarium verticillioides, Alternaria citri, A. infectoria, and Preussia sp.GreenhouseSafari Motlagh and Mohammadian (2016)
M. javanicaTomatoP. fluorescensGreenhouseTanha et al. (2016)
M. javanicaTomatoTalaromyces flavus and T. harzianumGreenhouseAbootorabi and Naraghi (2016)
F. solani and F. oxysporumChickpeaT. harzianum, T. asperellum, and T. virensFieldKhomeini et al. (2016)
M. phaseolinaSoybeanT. harzianumGreenhouseKhaledi and Taheri (2016)
C. beticolaSugar beetBacillus sp., Paenibacillus sp., Pseudomonas sp., and Enterobacter sp.In vitro and greenhouseArzanlou et al. (2016)
M. phaseolinaSoybeanT. harzianum, T. asperellum, and Trichoderma virensGreenhouseBarari and Foroutan (2016)
M. phaseolinaSoybeanT. harzianum and T. atrovirideIn vitro and greenhouseKia and Rahnama (2016)
F. o. f.sp. dianthiCarnationT. harzianumIn vitroKermajany et al. (2017)
V. dahliaePistachioT. harzianumGreenhouseFotoohiyan et al. (2017)
F. verticillioides, P. aphanidermatum, Penicillium sp., and V. dahliaeLactobacillus fermentum, Lactobacillus plantarum, Lactobacillus paralimentaris, Lactobacillus pentosus, Lactobacillus buchneri, and Sporolactobacillus terraeIn vitro and fieldKharazian et al. (2017)
Rhizoctonia solaniSuger beetBacillus subtilisIn vitro and greenhouseAhmadzadeh et al. (2017)
Macrophomina phaseolinaSoybeanTrichoderma harzianum, Tricchoderma reesei and Trichoderma atrovirideIn vitro and greenhouseAlamdarlou et al. (2017)
F. oxysporum, X. campestris, and E. amylovoraStreptomyces sp.In vitroShams and Shahnavaz (2017)
M. javanicaCucumberPseudomonas rhodesiae and Acinetobacter sp.In vitro and greenhouseAmini et al. (2017)
C. michiganensis subsp. insidiosusAlfalfaB. subtilis, Pseudomonas sp., Escherichia coli, Sphingomonas paucimobilis, and Paenibacillus glycanilyticusIn vitro and greenhouseOmidi Nasab and Khodakaramian (2017)
P. loosiTeaP. lilacinusGreenhouseYahyavi Azad et al. (2017)
P. syringae pv. syringaeOakPseudomonas protegens, Stenotrophomonas maltophilia, and Bacillus firmusIn vitroTashi‐Oshnoei et al. (2017)
F. o. f.sp. radicis lycopersiciTomatoStreptomyces carpaticusIn vitro and greenhouseZahed and Behbudi (2017)
A. niger and A. flavusB. cereusIn vitroMotamedi et al. (2017)
Xanthomonas oryzae pv. oryzaeRiceBacillus sp., B. subtilis, P. putida, and Enterobacter sp.GreenhouseYousefi et al. (2018)
R. solaniCommon beanB. pumilus, T. harzianum, and Rhizophagus intraradicesGreenhouseNasir Hussein et al. (2018)
P. syringae pv. syringae and P. tolaasiiPistachioPantoea brenneri, P. protegens, S. maltophilia, Bacillus anthracis, B. pumilus, and Serratia plymuthicaGreenhouseEtminani and Harighi (2018)
M. incognitaPistachioP. fluorescens, B. cereus, and B. subtilisGreenhouseZeynadini-Riseh et al. (2018)
Fusarium pseudograminearumWheatP. fluorescens, B. subtilis, and Streptomyces sp.In vitro and greenhouseNorouzian et al. (2018)
V. dahliaeTomatoBacillus spp., Pseudomonas spp., and Enterobacter spp.In vitroZendehdel et al. (2018)
H. schachtiiSugar beetT. harzianum, Talaromyces flavus, F. solani, and Pochonia chlamydosporiumGreenhouseHosini et al. (2018)
F. oxysporumCucumberT. harzianum and T. atrovirideIn vitroNosrati (2018)
P. carotovorum subsp. carotovorumPotatoBacillus spp.In vitroAbdoli et al. (2018)
S. sclerotiorumCucumberStreptomyces albidoflavusIn vitro and greenhouseEini et al. (2018)
P. loosiTeaP. lilacinus and Clonostachys roseaGreenhouseYahyavi Azad et al. (2018)
M. phaseolinaMelonB. amyloliquefaciensGreenhouseBakhshi et al. (2018)
S. sclerotiorumCucumberS. albidoflavusIn vitro and greenhouseZahed and Behbudi (2018)
F. o. f.sp. radices lycopersiciTomatoStreptomyces spp.In vitro and greenhouseVafaie et al. (2018)
F. oxysporumCucumberP. fluorescensGreenhouseSaberi-Riseh and Fathi (2018)
B. cinereaPichia galeiformis, Galactomyces candidum, M. guilliermondii, S. cerevisiae, Zygoascus meyerae, Pichia sp., Candida parapsilosis, Metschnikowia sp., Candida boidinii, Lecythophora sp., and Candida catenulataIn vitroGharaei et al. (2018)

6 Future perspectives

The climate changes and the growing human population with enhancing food demands have been considered as risks to food security in Iran. Different beneficial population of microbes can positively affect agricultural farms, such as pollutant degradation, productivity, and decrease in disease and pest. Maintaining and improving the performance of these microbes can increase agricultural products in different geographical area of Iran with various climates. More studies are needed to reach these aims in Iran. We need to engineer microbes in different parts and various population of plants. We can use beneficial microbes as bioformulation or other methods of treatments on plants. Since the roots are in contact with soil and rhizosphere has high biodiversity, these are the most important parts in plants for engineering the microbes. Therefore, soil improvement with beneficial microorganisms will be able to help farmers and agricultural ecosystems in the future years.

  1. Conflict of interest: Authors declare no conflict of interest.

References

[1] Abawi GS, Widmer TL. Impact of soil health management practices on soilborne pathogens, nematodes and root disease of vegetable crops. Appl Soil Ecol. 2000;15:37–47.10.1016/S0929-1393(00)00070-6Search in Google Scholar

[2] Abbasi S, Safaie N, Shams-bakhsh M, Shahbazi S. Biocontrol activities of gamma induced mutants of Trichoderma harzianum against some soilborne fungal pathogens and their DNA fingerprinting. Iran J Biotechnol. 2016;14(4):260–9.10.15171/ijb.1224Search in Google Scholar PubMed PubMed Central

[3] Abbaszadeh F, Mohammadi-Goltapeh E. Biocontrol of the charcoal rot of soybean (Macrophomina phaseolina) by members of the Sebacinales and Trichoderma species under greenhouse and field conditions. 18th Iranian Plant Protection Congress; 2008a. p. 267.Search in Google Scholar

[4] Abbaszadeh F, Mohammadi-Goltapeh E. Determination of suitable conditions for the axenic culture mycorrhizal fungi (Piriformospora indica and Sebacina vermifera) and to study the antagonistic ability of these fungi in vitro condition, 18th Iranian Plant Protection Congress; 2008b. p. 362.Search in Google Scholar

[5] Abdolahy M, Parsaiyan M. Study on antagonistic efficacy of Trichoderma isolates on cucurbit root rot. 20th Iranian Plant Protection Congress; 2012. p. 338.Search in Google Scholar

[6] Abdoli F, Fallahzadeh Mamaghani V, Shirzad A. Screening of biofilm forming rhizobacteria of field crops for biological control of Pectobacterium carotovorum subsp. carotovorum the causal agent of potato soft rot. Biol Control Pests Plant Dis. 2018;7(1):75–84.Search in Google Scholar

[7] Abdollahi M, Ommati F, Zaker M. Efficacy of some native Trichoderma isolates in biological control of Pythium aphanidermatum the causal agent of sugar beet root rot under greenhouse condition. Biocontrol Plant Prot. 2013;1(1):41–52.Search in Google Scholar

[8] Abdollahipuor FZ, Akbar Shirzad A, Hamid Mohammadi H. Evaluation of biocontrol of Rhizoctonia solani in cotton by Pseudomonas fluorescens isolates. Biol Control Pests Plant Dis. 2015;4(1).Search in Google Scholar

[9] Abdollahzadeh J, Mohammadi Goltapeh E, Rouhani H. Evaluation of antagonistic effect of Trichoderma species in biological control of causal agent of crown and root rot of sunflower (Sclerotinia minor) in vitro. J Agric Sci. 2003;13(2):13–23.Search in Google Scholar

[10] Abdollahzadeh J, Mohammadi GE, Rouhani H. Investigation on biocontrol of crown and root rot of sunflower (Sclerotinia sclerotiorum) by Trichoderma species in laboratory condition. J Agric Sci. 2006;12(1):43–56.Search in Google Scholar

[11] Abootorabi E, Naraghi L. Biological control of tomato root knot nematode Meloidogyne javanica By Talaromyces flavus and Trichoderma harzianum in the greenhouse conditions. Biocontrol Plant Prot. 2016;4(2):1–9.Search in Google Scholar

[12] Afrousheh M, Mohammadi H, Shokoohi E. Effect of Trichoderma viride and Trichoderma harzianum on chickpea root rot caused by Fusarium solani f. sp pisi. 20th Iranian Plant Protection Congress; 2012a. p. 286.Search in Google Scholar

[13] Afrousheh M, Mohammadi H, Shokoohi E. Evaluation of Trichoderma viride and Trichoderma harzianum as biocontrol agents against pea root rot disease caused by Fusarium solani f sp pisi. 20th Iranian Plant Protection Congress; 2012b. p. 255.Search in Google Scholar

[14] Afsharmanesh H, Ahmadzadeh M, Sharifi-Tehrani A. Biocontrol of Rhizoctonia solani the causal agent of bean damping-off by fluorescent pseudomonads. Commun Agric Appl Biol Sci. 2006;71(3):1021–29.Search in Google Scholar

[15] Afsharmanesh H, Ahmadzadeh M, Javan-Nikkhah M, Behboudi K. Improvement in biocontrol activity of Bacillus subtilis UTB1 against Aspergillus flavus using gamma-irradiation. Crop Prot. 2014;60:83–92.10.1016/j.cropro.2014.02.013Search in Google Scholar

[16] Afsharmanesh H, Ahmadzadeh M, Majdabadi A, Motamedi F, Behboudi K, Javan-Nikkhah M. Enhancement of biosurfactants and biofilm production after gamma irradiation-induced mutagenesis of Bacillus subtilis UTB1 a biocontrol agent of Aspergillus flavus. Arch Phytopathol Plant Prot. 2013;46(15):1874–84.10.1080/03235408.2013.780374Search in Google Scholar

[17] Aghighi S, Shahidi Bonjar GH, Naghizadeh M, Rashid Farrokhi P, Banihashemi Z, Heydarnejad J, et al. Bioactivity of Iranian native strains of Streptomyces plicatus and Frankia sp. against pistachio olive potato and cotton isolates of Verticillium dahliae. 17th Iranian Plant Protection Congress; 2006. p. 468.Search in Google Scholar

[18] Ahmadzadeh M, Shahrokhi A, Rahimian H, Behboodi K. Isolation of Bacillus subtilis strains from Iran and their biocontrol effect against Rhizoctonia solani AG2-2 damping off of sugar beet in vitro and greenhouse Scinzer. J Agric Biol Sci. 2017;3(1):5–10.Search in Google Scholar

[19] Ahmadzadeh M, Farzaneh M, Javan-Nikkhah M. Biological control of Magnaporthe salvini the causal agent of stem rot of rice by fluorescent Pseudomonads. 18th Iranian Plant Protection Congress; 2008. p. 291.Search in Google Scholar

[20] Ahmadi A, Sedaghat M, Saroukhani E, Khoshkam S. The evaluation of efficacy of biocontrol strains of Erwinia herbicola and Pseudomonas fluorescens against pear fire blight disease. 14th Iranian Plant Protection Congress; 2000. p. 140.Search in Google Scholar

[21] Ahmadi AR, Hedjaroude CA, Sharifi-Tehrani A, Kheiri A, Akiyani A. First report on isolation and identification of Paecilomyces farinosus from Heterodera schachtii and its antagonistic effects on the eggs in Iran. 12th Iranian Plant Protection Congress; 1996a. p. 354.Search in Google Scholar

[22] Ahmadi AR, Hedjaroude CA, Sharifi-Tehrani A, Kheiri A, Akiyani A Isolation of Fusarium solani from the sugar beet cyst nematode (Heterodera schachtii) and antagonistic evaluation on the eggs in vitro. 12th Iranian Plant Protection Congress; 1996b. p. 355.Search in Google Scholar

[23] Ahmadifar F, Roustaei A, Shahriari D. Biological control of cucumber wilt disease caused by Verticillium dahliae by using isolates of Bacillus and Pseudomonas. Agric Res. 2006;6(1):65–78.Search in Google Scholar

[24] Ahmadzadeh M, Sharifi-Tehrani A, Nabizadeh M. Biological control of Rhizoctonia solani Kuhn casual agent of common bean damping-off through Burkholderia cepacia (ex Burk) Yabuchi. Iran J Plant Prot Sci. 2009;39(1):81–90.Search in Google Scholar

[25] Ahmadzadeh M, Tehrani AS. Evaluation of fluorescent pseudomonads for plant growth promotion antifungal activity against Rhizoctonia solani on common bean and biocontrol potential. Biol Control. 2009;48(2):101–7.10.1016/j.biocontrol.2008.10.012Search in Google Scholar

[26] Ahmadzadeh M, Afsharmanesh H, Javan-Nikkhah M, Sharifi-Tehrani A. Identification of some molecular traits in fluorescent pseudomonads with antifungal activity. Iran J Biotechnol. 2006a;4(4):245–53.Search in Google Scholar

[27] Ahmadzadeh M, Sharifi-Tehrani A, Naizadeh M. Biological control of Rhizoctonia solani causal agent of common bean damping-off Burkholderia cepacia. 17th Iranian Plant Protection Congress; 2006b. p. 144.Search in Google Scholar

[28] Akbari KS, Niknejad KM, Elahinia SA, Khodaparast SA. Effect of antagonistic bacteria on Sclerotinia sclerotiorum the causal agent of white mold in oilseed rape. Iran J Plant Pathol. 2005a;41(3):307–28.Search in Google Scholar

[29] Akbari KS, Niknezhad KM, Elahinia SA, Khodaparast SA. Effect of antagonistic bacteria on Sclerotinia sclerotiorum the causal agent of white mold in oilseed rape. Plant Dis. 2005b;41:307–28.Search in Google Scholar

[30] Akbari-Kiarodi SL, Niknejad-Kazampor M, elahinia SS. Antagonistic effects of four Bacillus spp. isolates on lysis and inhibition of germination of Sclerotinia sclerotiorum the causal agents of oilseed rape white mold disease. 16th Iranian Plant Protection Congress; 2004. p. 288.Search in Google Scholar

[31] Akbari-Moghadam E, Saberi-Riseh R, Khodaygan P, Alaei H. Evaluate the control ability of Pseudomonas fluorescens strains on cucumber root rot disease. Biol Control Pests Plant Dis. 2015;4(2):77–88.Search in Google Scholar

[32] Akhlaghi M, Moradzadeh Eskandari M, Rouhani H, Mahdikhani Moghaddam E. Evaluation of some native and commercial isolates of Trichoderma to control of cucumber Fusarium wilt. 22th Iranian Plant Protection Congress; 2016. p. 350.Search in Google Scholar

[33] Akrami M, Golzary H, Ahmadzadeh M. Evaluation of different combinations of Trichoderma species for controlling Fusarium rot of lentil. Afr J Biotechnol. 2011;10(14):2653–58.10.5897/AJB10.1274Search in Google Scholar

[34] Akrami M, Ibrahimev A. Evaluation of different combination of Trichoderma species for controlling Fusarium rot of chickpea. J Crop Ecophysiology. 2010;4(2–1):75–83.Search in Google Scholar

[35] Alabouvette C, Schippers B, Lemanceau P, Bakker PAHM. Biological control of Fusarium wilts. In: Boland GJ, Kuykendall LD, editors. Plant-microbe interactions and biological control. New York NY: Marcel Dekker; 1998. p. 15–36.Search in Google Scholar

[36] Alamdarlou RM, Idin Hasanzadeh I, Mirabadi AZ, Foroozan F. Evaluation of the efficacy of Trichoderma isolates in the biological control of soybean charcoal rot disease in the laboratory and greenhouse conditions. Biocontrol Plant Prot. 2017;5(1):71–80.Search in Google Scholar

[37] Alavifard FS, Etebarian HR, Sahebany N, Aminian H. Biological control of grey mould of apple by isolates Candida membranifaciens, Rhodotorula mucilaginosa and Pichia guilliermondii. 18th Iranian Plant Protection Congress; 2008a. p. 339.Search in Google Scholar

[38] Alavifard F, Etebarian HR, Sahebany N, Aminian H. Control of grey mould of apple by Candida membranifaciens and induction of defense responses at 20°C. 18th Iranian Plant Protection Congress; 2008b. p. 338.Search in Google Scholar

[39] Ale Aghaee SH, Shahriari D, Torabi M. Evaluation of the effect of Trichoderma spp. isolates on biological control of Pythium aphanidermatum the causal agent of cucumber damping-off and seed rot in laboratory and greenhouse. 20th Iranian Plant Protection Congress; 2012. p. 252.Search in Google Scholar

[40] Alijani N, Manafi Shabestari M, Ghosta Y. Biocontrol effects of endophytic fungi isolated from apple trees against Diplodia bulgarica the causal agent of apple canker disease. 22th Iranian Plant Protection Congress; 2016. p. 339.Search in Google Scholar

[41] Alimi M, Soleimani MJ, Taghinasab Darzi M. Characterization and application of microbial antagonists for control of Fusarium head blight of wheat caused by Fusarium graminearum using single and mixture strain of antagonistic bacteria on resistance and susceptible cultivars African. J Microbiol Res. 2012;6(2):326–33.Search in Google Scholar

[42] Alimi M, Soleymani M, Rahimian H, Mohajer A. Application of antagonistic bacteria for controlling Fusarium head blight of wheat caused by Fusarium graminearum on semi-resistance and susceptible cultivars in greenhouse and field conditions. J Agric Sci Nat Resour. 2006;13(5):102–1014.Search in Google Scholar

[43] Alipoor Moghadam M, Moradi M, Sedaghati E, Khodaygan P. Identification of Trichoderma species and investigation on their effects on the crown and root rot of pistachio seedlings in Kerman province. 20th Iranian Plant Protection Congress; 2012. p. 295.Search in Google Scholar

[44] Ameri M, Kheiri A, Damadzadeh M, Rahimian H. An investigation on the efficiency of Pasteuria penetrans for control of root-knot nematodes (Meloidogyne javanica). 12th Iranian Plant Protection Congress; 1996. p. 379.Search in Google Scholar

[45] Amini J, Faizi S, Mirzaei S. Biological control of gray mold of three cultivar of strawberry using Bacillus strains. Biol Control Pests Plant iseasesD. 2016;5(1):13–23.Search in Google Scholar

[46] Amini F, Mahdikhani-Moghaddam E, Baghaee-Ravari S. Efficiency of cucumber endophytic bacteria on Meloidogyne javanica control under lab and greenhouse conditions. Biol Control Pests Plant esDiseas. 2017;6(1):83–92.Search in Google Scholar

[47] Amirafzali M, Fekrat F, Azami-Sardooei Z. Investigation of the effects of vermi- compost and Glomus mosseae on Fusarium oxysporum f.sp. lycopersici and Meloidogyne javanica. 22th Iranian Plant Protection Congress; 2016. p. 329.Search in Google Scholar

[48] Amir-Sadeghi S, Sharifi-Tehrani A, Hejaroud DHA, Okhovat M, Rouhani H. Investigation on antagonistic properties of Trichoderma spp. Against Sclerotinia sclerotiorum (Lib) deBary the causal agent of Sclerotinia disease of eggplant. 11th Protection Congress Plant Iranian; 1994. p. 151.Search in Google Scholar

[49] Ansari LGH, Shahedi SA, Ayatollahi M, Deghat S. Tracking for Streptomyces antagonists of Paecilomyces variotii causal of die-back disorder and verification and study on some physiological properties of the antagonists. 20th Iranian Plant Protection Congress; 2012. p. 293.Search in Google Scholar

[50] Arseneault T, Filion M. Biocontrol through antibiosis: exploring the role played by subinhibitory concentrations of antibiotics in soil and their impact on plant pathogens. Can J Plant Pathol. 2017;39(3):267–74.10.1080/07060661.2017.1354335Search in Google Scholar

[51] Arzanlou M, Mousavi S, Bakhshi M, Khakvar R, Bandehagh A. Inhibitory effects of antagonistic bacteria inhabiting the rhizosphere of the sugarbeet plants on Cercospora beticola Sacc the causal agent of Cercospora leaf spot disease on sugar beet. J Plant Prot Res. 2016;56(1):6–14.10.1515/jppr-2016-0002Search in Google Scholar

[52] Asef MR, Mohammadi-Gholtapeh E. Antagonistic effects of Cladobotryum species on the rhizomorph of Armillaria mellea. 16th Iranian Plant Protection Congress; 2004. p. 500.Search in Google Scholar

[53] Asef M, Goltapeh E, Danesh Y. Antagonistic effects of Trichoderma species in biocontrol of Armillaria mellea in fruit trees in Iran. J Plant Prot Res. 2008;48(2):213–22.10.2478/v10045-008-0025-6Search in Google Scholar

[54] Asghari MR, Myee CD. Comparative efficiency of management practices on stem and pod rot of groundnut. 10th Iranian Plant Protection Congress; 1992. p. 100.Search in Google Scholar

[55] Ashofteh F, Ahmadzadeh M, Fallahzadeh-Mamaghani V. Effect of mineral components of the medium used to grow biocontrol strain UTPF61 of Pseudomonas fluorescens on its antagonistic activity against Sclerotinia wilt of sunflower and its survival during and after the formulation process. J Plant Pathol. 2009;91(3):607–13.Search in Google Scholar

[56] Ashrafizadeh A, Etebarian HR, Zamanizadeh HR. Evaluation of Streptomyces and Trichoderma isolates for biological control of Fusarium wilt of melon. 15th Iranian Plant Protection Congress; 2002. p. 105.Search in Google Scholar

[57] Aslani MA, Harighi B, Abdollahzadeh J. Biological control of brown blotch disease of white button mushroom (Agaricus bisporus) using antagonistic bacteria. 22th Iranian Plant Protection Congress; 2016. p. 372.Search in Google Scholar

[58] Ayoubi N, Mirabolfathy M, Zafari D. The control of soybean root and crown rot (Phytophthora sojae) by Trichoderma at greenhouse conditions. 19th Iranian Plant Protection Congress; 2010. p. 783.Search in Google Scholar

[59] Ayoubi N, Zafari D, Mirabolfathy M. Combination of Trichoderma species and Bradyrhizobium japonicum in control of Phytophthora sojae and soybean growth. J Crop Prot. 2012;1(1):67–79.Search in Google Scholar

[60] Azad Disfani F, Sharifi-Tehrani A, Hedjaroude GA, Mohammadi M, Rohani H. Study on antagonistic properties of Bacillus and Pseudomonas isolates against Verticillium dahliae the causal agent of cotton wilt. 14th Iranian Plant Protection Congress; 2000. p. 57.Search in Google Scholar

[61] Azadi N, Shirzad A, Mohammadi H. A study of some biocontrol mechanisms of Beauveria bassiana against Rhizoctonia disease on tomato. Acta Biol Szeged. 2016;60(2):119–27.Search in Google Scholar

[62] Azadrooh M, Aminian H, Erebarian HR, Sahebani N. Studies on effect of combination sodium carbonate and yeast Hanseniaspora occidentalis M46 in control of Apple fruit gray mold caused by Botrytis cinerea. 20th Iranian Plant Protection Congress; 2012. p. 273.Search in Google Scholar

[63] Azami-Sardooie Z, Nasirpour R, Fekrat F, Alizadeh H. Use of Brassica oleracea tissue and Glomus mosseae for controlling of Meloidogyne javanica on tomato plant. Biol Control Pests Plant Dis. 2016;6(1):41–51.Search in Google Scholar

[64] Azizpour N, Rouhrazi K. Isolation and Characterization of Rhizosphere Bacteria for the Biocontrol of the Ascochyta rabiei in Iran. Adv Plants Agric Res. 2016;3(4):104.Search in Google Scholar

[65] Babaei Nasir S, Amini J, Soleimani Pari MJ, Harighi B. Biocontrol of garlic white rot disease (Sclerotium cepivorum) by using bacterial antagonistic strains of Bacillus species in In Vitro. 19th Iranian Plant Protection Congress; 2010. p. 809.Search in Google Scholar

[66] Babaeipoor E, Mirzaei S, Danesh YR, Arjm A, Chaichi M. Evaluation of some antagonistic bacteria in biological control of Gaeumannomyces graminis var. tritici causal agent of wheat take-all disease in Iran. Afr J Microbiol Res. 2011;5(29):5165–73.Search in Google Scholar

[67] Baghani F, Rahnama K, Aghajani MA, Dehghan MA. Parasitization of Fusarium graminearum by Trichoderma isolates after spraying wheat spikes in the field conditions. 20th Iranian Plant Protection Congress; 2012. p. 268.Search in Google Scholar

[68] Bagheri F, Rohani H, Felahati Rastegar M, Saberi Riseh RA. Investigation on Phase Variation Phenomenon in Fluorescent Pseudomonads and their Effect on Control of Gaeumannomyces graminis var. tritici Causal Agent of Take-all Disease. Iran J Plant Prot Sci. 2011;42(2):199–208.Search in Google Scholar

[69] Bagheri N, Ahmadzadeh M. First report of Achromobacter xylosoxidans on wheat rhizosphere in Iran and its biocontrol activity. Sci Agriculturae. 2016;16(1):36–42.Search in Google Scholar

[70] Bagheri N, Ahmadzadeh M, Heydari R. Effects of Pseudomonas fluorescens strain UTPF5 on the mobility mortality and hatching of root-knot nematode Meloidogyne javanica. Arch Phytopathol Plant Prot. 2014;47(6):744–52.10.1080/03235408.2013.820868Search in Google Scholar

[71] Bagheri S, Alizadeh H, Azadvar H, Amirmijani A. Evaluation of biocontrol characteristics of antagonistic bacteria isolated from cucumber rhizosphere against Sclerotinia sclerotiorum and Pythium aphanidermatum. Iran J Plant Prot Sci. 2016;47(2):325–40.Search in Google Scholar

[72] Bagheri J, Elahinia SA, Niknejad M, Pedramfar H, Bayar H. Biological control of vascular wilt and corm rot of gladiola (Fusarium oxysporum f.sp. gladioli) with Trichoderma isolates in vitro. 19th Iranian Plant Protection Congress; 2010. p. 812.Search in Google Scholar

[73] Bahrami B, Afshari-Azad H, Hassanzadeh N. Possibility of biological control of Ascochyta rabiei the causal agent of chickpea blight disease using antagonistic microorganisms. 17th Iranian Plant Protection Congress; 2006. p. 126.Search in Google Scholar

[74] Bakhshi E, Safaie N, Shamsbakhsh M. Bacillus amyloliquefaciens as a biocontrol agent improves the management of charcoal root rot in melon. J Agric Sci Technol. 2018;20(3):597–607.Search in Google Scholar

[75] Barari H. Biocontrol of tomato Fusarium wilt by Trichoderma species under in vitro and in vivo Conditions. Cercetari Agronomice Moldova. 2016;49(1):91–98.10.1515/cerce-2016-0008Search in Google Scholar

[76] Barari H, Foroutan A. Biocontrol of soybean charcoal root rot disease by using Trichoderma spp. Cercetari Agronomice Moldova. 2016;49(2):41–51.10.1515/cerce-2016-0014Search in Google Scholar

[77] Barari H, Alani V, Foroutan A, Dalili A. Biocontrol of soybean charcoal rot disease using antagonistic fungi in laboratory and greenhouse. 16th Iranian Plant Protection Congress; 2004. p. 282.Search in Google Scholar

[78] Barari H, Rayatpanah S, Dalili A, Oladi M. Study of the efficiency of three strains of Trichoderma harzianum on charcoal rot of soybean in field conditions in Mazandaran province. 21th Iranian Plant Protection Congress; 2014. p. 113.Search in Google Scholar

[79] Barbeau K, Zhang G, Live DH, Butler A. Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J Am Chem Soc. 2002;124(3):378–9.10.1021/ja0119088Search in Google Scholar

[80] Bardin M, Ajouz S, Comby M, Lopez-Ferber M, Graillot B, Siegwart M, et al. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides. Front Plant Sci. 2015;27(6):566.10.3389/fpls.2015.00566Search in Google Scholar

[81] Bashiri S, Llop P, Davino M, Golmohammadi M, Scuderi G. Efficacy of Pseudomonas chlororaphis subsp. aureofaciens SH2 and Pseudomonas fluorescens RH43 isolates against root-knot nematodes (Meloidogyne spp.) in kiwifruit XJENZA; 2015. p. 8.Search in Google Scholar

[82] Bazgir A, Rouhani H, Okhovat M. The investigation of Gliocladium sp. effect on Rhizoctonia solani the causal agent of seedling death and bean seed rot. 10th Iranian Plant Protection Congress; 1992. p. 108.Search in Google Scholar

[83] Bazgir E, Rouhani H, Okhovat M, Karimi A. Comparative efficiency of chemical vs biological control of Rhizoctonia disease of bean under field conditions. 11th Iranian Plant Protection Congress; 1994a. p. 141.Search in Google Scholar

[84] Bazgir E, Okhovat M, Sharifi A, Rouhani H. A comparative of chemical and biological control of Rhizoctonia disease in bean in greenhouse. 11th Iranian Plant Protection Congress; 1994b. p. 140.Search in Google Scholar

[85] Beeazar A, Torabi M. Study of the effectiveness of antagonistic Trichoderma in biological control of wheat carnal bunt (Tilletia indica) in vitro and in vivo. 16th Iranian Plant Protection Congress; 2004. p. 32.Search in Google Scholar

[86] Behboodi K, Sharifi-Tehrani A, Hedjaroude GA, Zad J. Study on antagonistic properties of Trichoderma virens against Phytophthora capsici the causal agent of pepper damping-off. 13th Iranian Plant Protection Congress; 1998. p. 180.Search in Google Scholar

[87] Behboudi K, Sharifi TA, Hejaroud GA, Zad S. Antagonistic effects of Trichoderma species on Phytophthora capsici the causal agent of pepper root and crown rot. Plant iseasesD. 2005;41:342–65.Search in Google Scholar

[88] Behdani M, Roustaee A, Etebarian HR, Khodakaramian. Biological control of root rot of wheat (Bipolaris spicifera) by antagonistic strains of Bacillus and Pseudomonas. 17th Iranian Plant Protection Congress; 2006. p. 12.Search in Google Scholar

[89] Behnam S, Ahmadzadeh M, Sharifi Tehrani A, Hedjaroude GA, Farzaneh M. Biological control of Sclerotinia sclerotiorum (Lib) de Bary the causal agent of white mold by Pseudomonas species on canola petals. Commun Agric Appl Biol Sci. 2007;72(4):993–6.Search in Google Scholar

[90] Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, et al. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol. 2001;47(7):642–52.10.1139/w01-062Search in Google Scholar

[91] Benítez T, Rincón AM, Limón MC, Codón AC. Biocontrol mechanisms of Trichoderma strains. Int Microbiology. 2004;7:249–60.Search in Google Scholar

[92] Beydaghi M, Panjehkeh N, Rezaei R. Identification fungal causing leaf spot on tomato and biological control by the antagonists isolated from the rhizosphere of tomato in Sistan. Biol Control Pests Plant Dis. 2016;6(1):23–39.Search in Google Scholar

[93] Binandeh N, Safaie N, Khelghatibana F. Antagonistic activity of two Bacillus species against apple white root rot fungus in vitro. 22th Iranian Plant Protection Congress; 2016. p. 349.Search in Google Scholar

[94] Bloemberg GV, Lugtenberg BJ. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr OpPlant Biol. 2001;4:343–50.10.1016/S1369-5266(00)00183-7Search in Google Scholar

[95] Boromand G, Fatemy S, Rezaee S. Evaluation of biocontrol of root knot nematode (Meloidogyne spp.) by Paecilomyces lilacinus fungus. 19th Iranian Plant Protection Congress; 2010. p. 808.Search in Google Scholar

[96] Calvo J, Calvente V, de Orellano ME, Benuzzi D, de Tosetti MIS. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Int J Food Microbiology. 2007;113:251–7.10.1016/j.ijfoodmicro.2006.07.003Search in Google Scholar PubMed

[97] Chavoshisani M, Jamali S, Taheri H, Khodaparast SA. Bioinhibition of citrus nematode Tylenchulus semipenetrans by antagonistic fungi under greenhouse condition. J Plant Prot. 2013;27(3):376–8.Search in Google Scholar

[98] Chegini S, Behboudi K, Javan-Nikkhah M, Farzaneh M. Study of Trichoderma isolates against mycelial growth and AFB1 produced by Aspergillus flavus on pistachio nuts. Biol Control Pests Plant Dis. 2013;2(2):71–79.Search in Google Scholar

[99] Cook RJ, Baker KF. The Nature and Practice of Biological Control of Plant Pathogens. St Paul MN: American Phytopathological Society; 1983. p. 539.Search in Google Scholar

[100] Costa JM, Loper JE. Characterization of siderophore production by the biological control agent Ente robacter cloacae. MPMI. 1994;7:440–8.10.1094/MPMI-7-0440Search in Google Scholar

[101] Dadjoo H, Khodakaramyian G, Rooh Razi K. The endophytic bacterium of potato Paenibacillus polymyxa as biocontrol agent of Ralstonia solanacearum. 21th Iranian Plant Protection Congress; 2014. p. 94.Search in Google Scholar

[102] Damadzadeh M, Samavatian H, Ansaripour B, Gowen S. Control of Meloidogyne javanica by Pasteuria penetrans in greenhouse. 12th Iranian Plant Protection Congress; 1996. p. 167.Search in Google Scholar

[103] Danaei M, Baghizadeh A, Pourseyedi S, Amini J, Yaghoobi MM. Biological control of plant fungal diseases using volatile substances of Streptomyces griseus. Eur J Exp Biol. 2014;4(1):334–9.Search in Google Scholar

[104] Davari M, Ezazi R. Study on the effects of four medicinal plant essential oils and two Trichoderma species on biocontrol of grape fruit rot fungi. Biol Control Pests Plant iseasesD. 2016;5(1):1–12.Search in Google Scholar

[105] David BV, Chandrasehar G, Selvam PN. Pseudomonas fluorescens: a plant-growth-promoting rhizobacterium (PGPR) with potential role in biocontrol of pests of crops. In Crop improvement through microbial biotechnology. Elsevier; 2018. pp. 221–43.10.1016/B978-0-444-63987-5.00010-4Search in Google Scholar

[106] Delkhah Z, Behboudi K. Production and application of Trichoderma harzianum Tr6 for controlling of damping-off caused by Phytophthora drechsleri and its effect on the growth promotion of cucumber. Biol Control Pests Plant Dis. 2015;3(2):97–104.Search in Google Scholar

[107] Derakhshan A, Safaie N, Alizadeh A. Investigating effect of epiphytic bacteria in biocontrol of wheat head blight on Tagen and Falat cultivars in vivo. 19th Iranian Plant Protection Congress; 2010. p. 840.Search in Google Scholar

[108] Droby S, Cohen L, Daus A, Weiss B, Horev B, Chalutz E, et al. Commercial testing of Aspire: a yeast preparation for the biological control of postharvest decay of citrus. Biol Control. 1998;12(2):97–101.10.1006/bcon.1998.0615Search in Google Scholar

[109] Duffy BK, Weller DM. Use of Gaeumannomyces graminis var. graminis alone and in combination with fluorescent Pseudomonas spp. to suppress take-all of wheat. Plant Dis. 1995;79:907–11.10.1094/PD-79-0907Search in Google Scholar

[110] Dukare AS, Paul S, Nambi VE, Gupta RK, Singh R, Sharma K, et al. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit Rev Food Sci Nutr. 2019;59(9):1498–513.10.1080/10408398.2017.1417235Search in Google Scholar PubMed

[111] Ebrahimi L, Etebarian HR, Aminian HA, Sahebani NA. Biological control of apple blue mold with Metschnikowia pulcherrima and assessment of total phenolic content and peroxidase activity. 20th Iranian Plant Protection Congress; 2012a. p. 298.Search in Google Scholar

[112] Ebrahimi L, Etebarian HR, Aminian HA. Control of apple blue mold with Torulaspora delbrueckii alone and with silicon in storage condition. 20th Iranian Plant Protection Congress; 2012b. p. 306.Search in Google Scholar

[113] Ebrahimi-Zarandi M, Shahidi Bonjar GH, Padasht Dehkaeio F, Ayatollahi Moosavi SA, Aghighi S. Biological control of rice blast by use of Streptomyces spp. 18th Iranian Plant Protection Congress; 2008. p. 351.Search in Google Scholar

[114] Eini S, Behbodi K, Purbabaei AA, Zahed MJ. Biological control of Sclerotinia sclerotiorum the causal agent of cucumber white stem rot by rhizosphere actinobacteria. Biol Control Pests Plant Dis. 2018;7(1):33–45.Search in Google Scholar

[115] Eivazi A, Soleimani MJ, Zafari D. Biological control of tomato stem canker disease caused by Botrytis cinerea using Trichoderma isolates. 19th Iranian Plant Protection Congress; 2010. p. 876.Search in Google Scholar

[116] Emadi A, Eteharian HR, Aminian H, Sahebani N, Alizadeh Aliabadi A. In vitro and in vivo biological control of blue mold of apple fruit by Bacillus subtilis. 19th Iranian Plant Protection Congress; 2010. p. 878.Search in Google Scholar

[117] Engelbrecht G, Horak I, Jansen van Rensburg PJ, Claassens S. Bacillus-based bionematicides: development modes of action and commercialization. Biocontrol Sci Technol. 2018;28(7):629–53.10.1080/09583157.2018.1469000Search in Google Scholar

[118] Etebarian H, Mohammadifar M, Alizadeh H, Zareei SA. Biological control of barley covered smut by bacterial antagonists. Appl Entomology Phytopathology. 2007;74(2):81–91.Search in Google Scholar

[119] Etebarian HR. Evaluation of Trichoderma isolates for biological control of charcoal stem rot in melon caused by Macrophomina phaseolina. J Agric Sci Technol. 2006;8:243–50.Search in Google Scholar

[120] Etminani F, Harighi B. Isolation and identification of endophytic bacteria with plant growth promoting activity and biocontrol potential from wild pistachio trees. Plant Pathol J. 2018;34(3):208.10.5423/PPJ.OA.07.2017.0158Search in Google Scholar PubMed PubMed Central

[121] Fadaei Sh, Shahidi Bonjar GH, Aminaee MM, Negarestani MR. Evaluation of physiological characteristic of some Actinomycetes isolated from agricultural soils of Kerman Fars and Hormozgan Provinces for production of chitinase protease lipase and amylase enzymes. 20th Iranian Plant Protection Congress; 2012. p. 254.Search in Google Scholar

[122] Fallahzadeh-Mamaghani V, Alizadeh Aliabadi A, Shirzad A. Screening of fluorescent pseudomonads based on production of siderophore and induction of plant ethylene production for induction of systemic resistance against wheat bacterial leaf streak. Iran J Plant Prot Sci. 2016;47(2):277–92.Search in Google Scholar

[123] Fallahzadeh-Mamaghani V, Ahmadzadeh M, Sharifi R. Screening systemic resistance-inducing fluorescent pseudomonads for control of bacterial blight of cotton caused by Xanthomonas campestris pv. malvacearum. J Plant Pathol. 2009;91(3):663–7.Search in Google Scholar

[124] Faraji A, Roghaye Hemmati R, Marefat A. Biological control of major fungal causal agent of root and crown rot of bean in Zanjan province with antagonistic bacteria. Iran J Plant Prot Sci. 2015;46(2):317–29.Search in Google Scholar

[125] Farzaneh M, Sharifi-Tehrani A, Ahmadzadeh M, Zad J, Effect of some antagonistic bacteria in the control of Phytophthora cactorum the casual agent of root and crown rot on apple trees. 17th Iranian Plant Protection Congress; 2006. p. 338.Search in Google Scholar

[126] Farzaneh M, Sharifi-Tehrani A, Ahmadzadeh M, Zad J. Biocontrol of Phytophthora cactorum the causal agent of root and crown rot on apple (Malus domestica) by formulated Pseudomonas fluorescens. Commun Agric Appl Biol Sci. 2007;72(4):891–900.Search in Google Scholar

[127] Farzaneh M, Shi ZQ, Ahmadzadeh M, Hu LB, Ghassempour A. Inhibition of the Aspergillus flavus Growth and Aflatoxin B1 contamination on pistachio nut by Fengycin and Surfactin-producing Bacillus subtilis UTBSP1. Plant Pathol J. 2016;32(3):209.10.5423/PPJ.OA.11.2015.0250Search in Google Scholar PubMed PubMed Central

[128] Fatemy S, Ahmadian Yazdi A. Isolation and introduction of Paecilomyces fumosoroseus from beet cyst nematodes, Heterodera schachtii. Sugerbeet. 1997;13(1):63–70.Search in Google Scholar

[129] Fatemy S. Evaluation of Paecilomyces lilacinus as a biocontrol agent of Meloidogyne javanica on tomato. 12th Iranian Plant Protection Congress; 1996. p. 173.Search in Google Scholar

[130] Fedi S, Tola E, Moenne-Loccoz Y, Dowling DN, Smith LM, O’Gara F. Evidence for signaling between the phytopathogenic fungus Pythium ultimum and Pseudomonas fluorescens F113: pultimum represses the expression of genes in Pseudomonas fluorescens F113 resulting in altered ecological fitness. Appl Environ Microbiol. 1997;63:4261–66.10.1128/aem.63.11.4261-4266.1997Search in Google Scholar PubMed PubMed Central

[131] Fernando WGD, Nakkeeran S, Zhang Y. Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA, editor. PGPR: Biocontrol and Biofertilization Dordrecht (NL). Dordrecht/Netherlands: Springer; 2006. p. 67–109.10.1007/1-4020-4152-7_3Search in Google Scholar

[132] Firouzian Bandpey S, Rahimian H. Identification of Pantoea agglomerans and evaluation of its antagonistic activities against Erwinia amylovora the causative agent of fire blight of pome fruits in Mazandaran. 22th Iranian Plant Protection Congress; 2016. p. 315.Search in Google Scholar

[133] Flint ML, Dreistadt SH, Clark Jack K. editors. Natural Enemies Handbook: The Illustrated Guide to Biological Pest Control. University of California Press; 1998.Search in Google Scholar

[134] Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G. Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl. Microbiol. Biotechnol. 2007;76(5):1145–52.10.1007/s00253-007-1077-7Search in Google Scholar PubMed

[135] Foroutan A, Rahimian H, Raiatpanah S, Barary H, Sedaghatfar E, Ramezani H, et al. Effect of Trichoderma harzianum and T. viride for control of take –all in Mazandaran. 15th Iranian Plant Protection Congress; 2002. p. 19.Search in Google Scholar

[136] Foroutan A. Evaluation of Trichoderma isolates for biological control of wheat Fusarium foot and root rot. Romanian Agric Res. 2013;30:35–44.Search in Google Scholar

[137] Foroutan A, Rahimian H, Alizadeh AE. Effect of antagonistic bacteria on Fusarium head blight of wheat. Iran J Plant Pathol. 2005;41(3):455–73.Search in Google Scholar

[138] Fotoohiyan Z, Rezaee S, Bonjar GHS, Mohammadi AH, Moradi M. Biocontrol potential of Trichoderma harzianum in controlling wilt disease of pistachio caused by Verticillium dahliae. J Plant Prot Res. 2017;57(2):185–93.10.1515/jppr-2017-0025Search in Google Scholar

[139] Fotoohiyan Z, Rezaee S, Bonjar GHS, Mohammadi AH, Moradi M. Induction of systemic resistance by Trichoderma harzianum isolates in pistachio plants infected with Verticillium dahliae. J Nuts. 2015;6(2):95–111.Search in Google Scholar

[140] Fravel DR. Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathology. 1988;26:75–91.10.1146/annurev.py.26.090188.000451Search in Google Scholar

[141] Geraldine AM, Lopes FAC, Carvalho DDC, Barbosa ET, Rodrigues AR, Brandão RS, et al. Cell wall-degrading enzymes and parasitism of sclerotia are key factors on field biocontrol of white mold by Trichoderma spp. Biol Control. 2013;67:308–16.10.1016/j.biocontrol.2013.09.013Search in Google Scholar

[142] Gerami E, Hassanzadeh N, Abdollahi H, Ghasemi A, Heydari A. Evaluation of some bacterial antagonists for biological control of fire blight disease. J Plant Pathol. 2013;95(1):127–34.Search in Google Scholar

[143] Ghaffarian A, Minassian V, Shahriari D. Biological control of Macrophomina phaseolina the causal agent of charcoal rot disease by Trichoderma spp. 14th Iranian Plant Protection Congress; 2000. p. 103.Search in Google Scholar

[144] Ghafelebashi SS, Jamali F, Ahmadzadeh M. Study biological properties of Pseudomonas fluorescens UTPF68, biocontrol agent against Phytophthora drechsleri. Biol Control Pests Plant Dis. 2014;3(2):105–16.Search in Google Scholar

[145] Ghanbari SH, Zamani-zadeh HR, Sheikholeslami M, Sharifi R. Biological control of sugar beet damping-off caused by Rhizoctonia solani with some commercial and non-commercial isolates of Trichoderma harzianum. 20th Iranian Plant Protection Congress; 2012. p. 305.Search in Google Scholar

[146] Gharaei M, Jamali S, Abbasi S. Effects of biocontrol activity of ascomycetes yeasts isolated from natural resources on grey mold fungus (Botrytis cinerea) using dual culture method. Biol Control Pests Plant Dis. 2018;7(1):1–7.Search in Google Scholar

[147] Ghasemi Sardareh R, Etebarian HR, Vasebi Y. Control of blue mold of orange fruit by Pichia kluyveri and induction of defense responses in flavedo tissue at 20°C. 20th Iranian Plant Protection Congress; 2012. p. 304.Search in Google Scholar

[148] Ghasemi Sardareh R, Etebarian HR, Sahebani N, Aminian H. Studies on biological control of blue mold in Thomson orange by Pichia guilliermondii. 19th Iranian Plant Protection Congress; 2010. p. 902.Search in Google Scholar

[149] Ghods-Alavi BS, Ahmadzadeh M, Behboudi K, Jamali S. Biocontrol of rhizome soft rot (Pectobacterium carotovorum) on valerian by Pseudomonas spp. under in vitro and greenhouse conditions. J Agric Technol. 2012;8:1913–23.Search in Google Scholar

[150] Gholami M, Khakvar R, Niknam GR, Aliasgar Zad N, Motallebi Azar AR. Biological control of white mold disease of bean (Sclerotinia sclerotiorum) using endophytic bacteria. 20th Iranian Plant Protection Congress; 2012. p. 311.Search in Google Scholar

[151] Gholami M, Khakvar R, Aliasgar Zad N. Application of endophytic bacteria for controlling anthracnose disease (Colletotrichum lindemuthianum) on bean plants. Arch Phytopathol Plant Prot. 2013;46(15):1831–38.10.1080/03235408.2013.778477Search in Google Scholar

[152] Gholamnejad L, Etebarian HR, Roustaee A, Sahebani NA, Mirzaie M. Biological control of apple blue mold with three isolates Candida membranifaciens. 18th Iranian Plant Protection Congress; 2008, p. 342.10.2478/v10045-009-0042-0Search in Google Scholar

[153] Gholamnejad J, Etebarian HR, Sheikh Beig Goharrizi MA, Nemati A, Naseri Nasab F. Biological control of apples blue mold by two isolates of Saccharomyces cerevisiae in order to reduce the environmental pollution. Ann Military Health Sci Res. 2009;7(3):182–89.Search in Google Scholar

[154] Gholamnejad J, Etebarian H, Naserinasab F. Induction of defense responses and biological control of blue mold of apple fruit (Penicillium expansum) with Rhodotorula mucilaginosa a1quarterly. J Res Plant Pathol. 2011;1(2):45–57.Search in Google Scholar

[155] Gholamnejad J, Etebarian HR, Sahebani NA, Roustaee A. Characterization of biocontrol activity of two yeast strains from Iran against blue mould of apple in order to reduce the environmental pollution. J Int Environ Appl Sci. 2009;4(1):28–36.Search in Google Scholar

[156] Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P, Omidvar R, Kariman K. Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol Control. 2018;117:147–57.10.1016/j.biocontrol.2017.11.006Search in Google Scholar

[157] Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF. Food security: the challenge of feeding 9 billion people. Science. 2010;327:812–18.10.1126/science.1185383Search in Google Scholar PubMed

[158] Golamnejad J, Naserinasab F, Etebarian HR. Control of blue mold of apple fruit with Rhodotorula mucilaginosa A1 and induction of defense responses. 19th Iranian Plant Protection Congress; 2010. p. 885.Search in Google Scholar

[159] Golpayegani S, Zafari D, Khodakaramian G. The biological control of important faba bean root rot agents caused by rhizospheric antagonist bacteria. Iran J Plant Prot Sci. 2010;41(2):283–92.Search in Google Scholar

[160] Golzari H, Panjehkeh N, Salari M, Sedaghati Khoravi E, Rejali F. Effects of mycorrhizal fungi (Glomus mosseae and Glomus intraradices) on root-knot nematode (Meloidogyne javanica) on tomato. Biol Control Pests Plant Dis. 2013;1(2):121–9.Search in Google Scholar

[161] Golzary H, Ahmadzadeh M, Panjekeh N, Salari M, Sedaghati E. Evaluation of Trichoderma harzianum isolates for biological control of Meloidogyne javanica in in vitro. 18th Iranian Plant Protection Congress; 2008a. p. 280.Search in Google Scholar

[162] Golzary H, Ahmadzadeh M, Panjekeh N, Salari M, Sedaghti E. Biological control of Meloidogyne javanica by Iranian strains of fluorescent Pseudomonads in vitro. 18th Iranian Plant Protection Congress; 2008b. p. 378.Search in Google Scholar

[163] Guo L, Rasool A, Li C. Antifungal substrates of bacterial origin and plantdisease management. In: Maheshwari DK, editor. Bacteria in Agrobiology: Disease Management. Berlin/Heidelberg: Springer Verlag; 2013. p. 473–85.10.1007/978-3-642-33639-3_18Search in Google Scholar

[164] Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent Pseudomonads. Nat Rev Microbiology. 2005;3:307–19.10.1038/nrmicro1129Search in Google Scholar PubMed

[165] Habibi R, Rahnama K. Morphological and molecular identification of Trichoderma species based on rDNA ITS sequences from cucurbits field of Iran and study their antagonistic properties. 22th Iranian Plant Protection Congress; 2016. p. 324.Search in Google Scholar

[166] Haggag Wafaa M, Abo SA, Sedera. Influence of iron sources and siderophores producing Pseudomonas fluorescens on crown rot disease incidence and seed contamination of peanut with pathogenic Aspergilli Egyptian. J Phytopathology. 2000;28:1–16.Search in Google Scholar

[167] Haggag WM, Mohamed HAA. Biotechnological aspects of microorganisms used in plant biological control. Am-Eurasian J. Sustain Agric. 2007;1(1):7–12.Search in Google Scholar

[168] Haghdel M, Taghavi SM, Mohammadi AH. Study of antagonistic effect isolated bacteria of pistachio nuts on toxigenic Aspergillus flavus. 18th Iranian Plant Protection Congress; 2008a. p. 252.Search in Google Scholar

[169] Haghdel M, Taghavi SM, Mohammadi AH. Study of antagonistic effect isolated bacteria of pistachio nuts on toxigenic Aspergillus flavus. 18th Iranian Plant Protection Congress; 2008b. p. 333.Search in Google Scholar

[170] Hajieghrari B, Torabi-Giglou M, Mohammadi MR, Davari M. Biological potential of some Iranian Trichoderma isolates in the control of soil borne plant pathogenic fungi. Afr J Biotechnol. 2008;7(8).Search in Google Scholar

[171] Handelsman J, Stabb K. Biocontrol of soilborne plant pathogens. Plant Cell. 1996;8:1855–69.10.2307/3870235Search in Google Scholar

[172] Hasani E, Khodakaramian G. Assessment of the antagonistic activity of fluorescent pseudomonads isolated from potato rhizosphere towards Ralstonia solanacearum. 22th Iranian Plant Protection Congress; 2016. p. 274.Search in Google Scholar

[173] Hashemi Alizade SK, Rouhani H, Tarighi S. Study of interaction between mycorrhizal Glomus fasciculatum and Bacillus subtilis on control of common root rot of wheat hay Bipolaris sorokiniana. 19th Iranian Plant Protection Congress; 2010. p. 925.Search in Google Scholar

[174] Hashemi Alizadeh SG, Rouhani H, Tarighi S. study of interaction between mycorrhiza Glomus fasciculatum and Pseudomonas fluorescens on control of common root rot of wheat caused by Bipolaris sorokiniana. J Plant Prot. 2013;27(2):142–8.Search in Google Scholar

[175] Heidari Faroughi S, Etebarian HR, Zamanizadeh HR. Evaluation of Trichoderma isolates for biological control of Phytophthora drechsleri in greenhouse. Entomol Phytopathol. 2004;72(2):113–34.Search in Google Scholar

[176] Heidari F, Olia M. Study on the separate and integrated application of the fungus Trichoderma harzianum i2375 and Vermicompost in Control of Root-knot Nematode Meloidogyne javanica on Tomato. 22th Iranian Plant Protection Congress; 2016. p. 271.Search in Google Scholar

[177] Heidari-Tajabadi F, Ahmadzadeh M, Moinzadeh A, Khezri M. Influence of some culture media on antifungal activity of Pseudomonas fluorescens UTPF61 against the Sclerotinia sclerotiorum. Afr J Agric Res. 2011;6(30):6340–47.10.5897/AJAR11.854Search in Google Scholar

[178] Heidarzadeh N, Baghaee-Ravari S. Application of Bacillus pumilus as a potential biocontrol agent of Fusarium wilt of tomato. Arch Phytopathol Plant Prot. 2015;48(13–16):841–9.10.1080/03235408.2016.1140611Search in Google Scholar

[179] Heidari Faroughi S, Etebarian HR, Zamanizadeh HR. Evaluation of Streptomyces isolates for biological control of cucurbit wilt. 15th Iranian Plant Protection Congress; 2002. p. 110.Search in Google Scholar

[180] Heydari A, Fatahi H, Zamanizadeh H, Hasan ZN, Naraghi L. Investigation on the possibility of using bacterial antagonists for biological control of cotton seedling damping-off in green house. Appl Entomol Phytopathol. 2004;72(1):51–68.Search in Google Scholar

[181] Hojjat Jalali AA, Coosemans J. Antagonistic fungi of sugar beet cyst nematode of Iran. 12th Iranian Plant Protection Congress; 1995. p. 128.Search in Google Scholar

[182] Hosini M, Mehdi Nasr Esfahani MN, Ghorbani M. Antagonistic effects of fungal isolates and two commercial bioproducts in the control of sugar beet cyst nematode Heterodera schachtii. Biocontrol Plant Prot. 2018;5(2):1–12.Search in Google Scholar

[183] Hosseini Haji Abdal M, Rahimian H, Shahriari D, Sahebani N, Lotfi M. The evaluation of Trichoderma atroviride and Trichoderma harzianum isolates in biological control of Cantaloup Fusarium wilt disease. 21th Iranian Plant Protection Congress; 2014a. p. 98.Search in Google Scholar

[184] Hosseini Haji Abdal M, Rahimian H, Shahriari D, Sahebani N, Lotfi M. Biological control of Cantaloup Fusarium wilt disease by Bacillus subtilis and investigation of total phenol amount and peroxidase enzyme changes. 21th Iranian Plant Protection Congress; 2014b. p. 95.Search in Google Scholar

[185] Hosseini H, Panjehkeh N, Alaei H. Effect of Glomus mosseae on cucumber damping off caused by Pythium under salinity stress. Biol Control Pests Plant Dis. 2016;5(2):139–49.Search in Google Scholar

[186] Hosseyni H, Alaei H, Panjehkeh N. The possibility of biological control of Pythium aphanidermatum the causal agent of cucumber damping off using Bacillus isolates under saline conditions. 20th Iranian Plant Protection Congress; 2012a. p. 271Search in Google Scholar

[187] Hosseyni H, Alaei H, Panjehkeh N, Rostami F. Evaluation of Trichoderma isolates for biological control of cucumber damping off caused by Pythium aphanidermatum in vitro and in vivo. 20th Iranian Plant Protection Congress; 2012b. p. 258.Search in Google Scholar

[188] Iragi MM, Mostafa M, Rahnama K, Taghinasab M. Evaluation of antagonistic activity of Bacillus subtilis isolates on Ophiostoma novo-ulmi causal agent of “Dutch Elm Disease” in vitro. 18th Iranian Plant Protection Congress; 2008. p. 326.Search in Google Scholar

[189] Iraqi M, Rahnama K. Survey on Bacillus subtilis isolates for biological control of sunflower root rot caused by Macrophomina phaseolina (Tassi). Goid Sci J Agriculture. 2011;34(1):1–11.Search in Google Scholar

[190] Iraqi MM, Rahnama K, Zafari D, Taghinasab M. Investigating biological control of Ophiostoma novo-ulmi causal agent of Dutch Elm Disease by Trichoderma harzianum and T. virens in vitro. J Agric Sci Nat Resour. 2007;14(5):178–91.Search in Google Scholar

[191] Izadyar M, Padasht F. Antagonistic activity of some microorganisms against rice sheat blight. 11th Iranian Plant Protection Congress; 1994. p. 65.Search in Google Scholar

[192] Izadyar M, Popushoi I, Rouhani H. Evaluation of antagonistic activity Trichoderma and Gliocladium species on Rhizoctonia solani the causal agent of rice sheath blight in vitro. 14th Iranian Plant Protection Congress; 2000a. p. 247.Search in Google Scholar

[193] Izadyar M, Popushoi I, Rouhani H. Evaluation of antagonistic activity of Trichoderma species and Gliocladium virens on Rhizoctonia solani causal agent of rice sheath blight on bean leaf. 14th Iranian Plant Protection Congress; 2000b. p. 35.Search in Google Scholar

[194] Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A. Molecular interaction of 1-aminocyclopropane-1-carboxylate deaminase (ACCD)-producing endophytic Streptomyces sp. GMKU 336 towards salt-stress resistance of Oryza sativa L. cv KDML105. Sci Rep. 2018;8(1):1950.10.1038/s41598-018-19799-9Search in Google Scholar PubMed PubMed Central

[195] Jalali S, Panjekeh M, Darvishnia M, Salari M, Salehi A. Biological control of Fusarium oxysporum fsp. lycopersici by antagonistic bacteria Bacillus and Pseudomonas isolated from tomato rhizosphere in Lorestan province. Res Plant Pathol. 2016;4(1):67–78.Search in Google Scholar

[196] Jalali S. Biological control of Fusarium oxysporum fsp. lycopersici using antagonistic agents of tomato rhizosphere (Doctoral dissertation University of Zabol); 2014.Search in Google Scholar

[197] Jamali F, Modarresi M, Bayat F. Biocontrol potential of Pseudomonas fluorescens strains producing 24diacetylphloroglucinol and hydrogen cyanide against tomato Fusarium wilt. Biol Control Pests Plant. 2016;5(2):235–46.Search in Google Scholar

[198] Jamali F, Sharifi-Tehrani A, Okhovat M, Zakeri Z. Study of the effect of some antagonistic bacteria against Fusarium oxysporum the causal agent of chickpea wilt in greenhouse and field condition. 17th Iranian Plant Protection Congress; 2004. p. 139.Search in Google Scholar

[199] Jamdar Z, Mohammadi AH, Mohammadi S, Haghdel M. Study of antagonistic effect of isolated Trichoderma from soils of pistachio gardens on radial growth of Verticillium dahliae the causal agent of Verticillium wilt of pistachio. 20th Iranian Plant Protection Congress, 2012. p. 323.Search in Google Scholar

[200] Jamshidnejad V, Sahebany N, Etebarian HR. Biological control of root-knot nematode, Meloidogyne javanica, by Arthrobotrys oligospora and Paecilomyces lilacinus, and their effects on tomato development. The first national conference on agriculture in difficult environmental conditions, 2012. p. 1–5.Search in Google Scholar

[201] Javadi L, Naeimi S, Rezaei S, Khosravi V. Biological control of Magnaporthe oryzae the causal agent of rice blast disease with native Trichoderma strains in vitro. 20th Iranian Plant Protection Congress; 2012. p. 307.Search in Google Scholar

[202] Javadi L, Naeimi SH, Rezaei S, Vahid K. Biological control of rice blast disease with native Trichoderma isolates. J Biocontrol Plant Prot. 2014;2(1):1–15.Search in Google Scholar

[203] Javanshir Javid K, Mahdiyan S, Behboudi K, Alizadeh H. Biocontrol of cucumber Fusarium root and stem rot disease by Trichoderma isolates. 20th Iranian Plant Protection Congress; 2012. p. 263.Search in Google Scholar

[204] Kahnooji H, Alaei H, Mohammadi AH, Haghdel M. Isolation and identification of Trichoderma species from soil of pistachio orchards in Rafsanjan and their evaluation for biological control of Aspergillus flavus. 20th Iranian Plant Protection Congress; 2012. p. 290.Search in Google Scholar

[205] Karampour F, Okhovat M. Investigation on the effect of some isolates of Trichoderma and Gliocladium on the growth of Fusarium solani at lab conditions. 10th Iranian Plant Protection Congress; 1992. p. 143.Search in Google Scholar

[206] Karimi E, Rouhani H, Zafari DM, Khoda Karamian GH, Taghinasab M. Biological control of vascular wilt disease of carnation caused by Fusarium oxysporum fsp. dianthi by Bacillus and Pseudomonas strains isolated from rhizosphere of carnation. J Sci Technol Agric Nat Resour. 2007;11(41):309–19.Search in Google Scholar

[207] Karimi E, Sadeghi A. Study on optimum growth condition and designing formulation for increasing shelf life of Streptomyces rimosus strain c-(2012) as biocontrol agent. Biol J Microorg. 2015;4(15):109–22.Search in Google Scholar

[208] Karimi E, Rouhani H, Zafari D, Taghinasab M. Investigation on possible reason of reduced antagonistic potential of Trichoderma longibrachiatum chickpea root rot disease under greenhouse conditions. 16th Iranian Plant Protection Congress; 2004a. p. 185.Search in Google Scholar

[209] Karimi E, Rouhani H, Zafari D, Khodakaramian Gh. Antagonistic activity of Bacillus and Pseudomonas fluorescens isolated from carnation rhizosphere against Fusarium oxysporum f.sp. dianthi the causal agent of vascular rot of carnation in Mahallat. 16th Iranian Plant Protection Congress; 2004b. p. 456.Search in Google Scholar

[210] Karimi E, Rouhani H, Zafari D, Khodakaramian Gh, Taghinasab M. Investigation on the antagonistic activity of Bacillus isolates from chickpea rhizosphere against Fusarium oxysporum f.sp. ciceri the causal agent of root rot of chickpea in Kermanshah province. 16th Iranian Plant Protection Congress; 2004c. p. 183.Search in Google Scholar

[211] Karimi E, Safaie N, Shams-Baksh M, Mahmoudi B. Bacillus amyloliquefaciens SB14 from rhizosphere alleviates Rhizoctonia damping-off disease on sugar beet. Microbiol Res. 2016;192:221–30.10.1016/j.micres.2016.06.011Search in Google Scholar PubMed

[212] Karimik Amini J, Harighi B, Bahrannejad B, Behtoei H. Antagonistic activity of Bacillus and Pseudomonas isolates from the chickpea rhizosphere against Fusarium oxysporum f.sp. ciceri the causal agent of Fusarium wilt disease of chickpea in Kurdistan province. 19th Iranian Plant Protection Congress; 2010. p. 908.Search in Google Scholar

[213] Karimipourfard H, Damadzadeh M. The effect of Pasteuria to control of Meloidogyne spp. on pistachio. 17th Iranian Plant Protection Congress; 2006. p. 375.Search in Google Scholar

[214] Karkhaneh R, MSheikholeslami M, Hojat-Jalali AA, Asadi Sardari A. Study on antagonistic effect of Penicillium spp. associated with females and egg masses of Meloidogyne javanica in vitro. 20th Iranian Plant Protection Congress; 2012. p. 277.Search in Google Scholar

[215] Kasfi K, Taheri P, Jafarpour B, Tarighi S. Biological control of grey mould disease on grape caused by Botrytis cinerea using Trichoderma harzianum and Candida membranifaciens. 22th Iranian Plant Protection Congress; 2016a. p. 387.Search in Google Scholar

[216] Kasfi K, Taheri P, Jafarpour B, Tarighi S. Biological control of Aspergillus niger the causal agent of black rot disease on grape using Trichoderma harzianum and Candida membranifaciens. 22th Iranian Plant Protection Congress; 2016b. p. 386.Search in Google Scholar

[217] Kavari M, Mahdikhani Moghadam E, Rouhani H. Survey on chitinase production by several isolates of Trichoderma and its biological control effect on tomato root-knot nematode Meloidogyne javanica. J Plant Prot. 2015;29(1):123–33.Search in Google Scholar

[218] Kazempour MN. Biological control of Rhizoctonia solani the causal agent of rice sheath blight by antagonistic bacteria in greenhouse and field conditions. Plant Pathol J. 2004;3(2):88–96.10.3923/ppj.2004.88.96Search in Google Scholar

[219] Kazemzadeh M, Roustaii A, Padasht F, Khodakaramian Kh. Study of biological control of rice sheath blight caused by Rhizoctonia solani with some antagonistic bacteria in the Guilan Province. J Plant Prot. 2012;26(1):44–54.Search in Google Scholar

[220] Kazemzadeh M, Padasht F, Rostai A. Effects of antibiosis antagonistic bacterial isolated from rice paddy of the Guilan province on the Guilan province on the Rhizoctonia solani causal agent of rice sheath blight. J Agric Sci Nat Resour. 2006;12(6):146–53.Search in Google Scholar

[221] Kermajany Z, Jamali Zavareh A, Fadaei Tehrani A. In vitro inhibitory effects of five strains of Trichoderma on the growth of Fusarium oxysporum f.sp. dianthi. Biol Control Pests Plant Dis. 2017;6(1):121–25.Search in Google Scholar

[222] Keshavarzi S, Behboudi K, Sarpeleh A, Ahmadzade M. Potential of Trichoderma species for biocontrol of root rot and vine decline of Cucumis melo caused by Monosporascus cannonballus. 20th Iranian Plant Protection Congress; 2012a. p. 267.Search in Google Scholar

[223] Keshavarzi S, Behboudi K, Sarpeleh A, Ahmadzade M. Induction of chitinase dependent resistance by Trichoderma virens strain IRAN 1101 C against Monosporascus cannonballus the casual agent of root rot and vine decline of muskmelon. 20th Iranian Plant Protection Congress; 2012b. p. 261.Search in Google Scholar

[224] Khabbaz Jolfaei H, Mohammadi Goltapeh E, Rahimian HA. Isolation screening and evaluation of the efficacy of potentially antagonistic bacteria for the biocontrol of brown blotch disease of the cultivated mushroom Agaricus bisporus. Iran J Plant Pathol. 2005;41(4):543–59.Search in Google Scholar

[225] Khaledi N, Taheri P. Biological control potential of Trichoderma harzianum fungi against soybean charcoal rot agent under experimental and greenhouse condition. 21th Iranian Plant Protection Congress; 2014. p. 74.Search in Google Scholar

[226] Khaledi N, Taheri P. Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina. J Plant Prot Res. 2016;56(1):21–31.10.1515/jppr-2016-0004Search in Google Scholar

[227] Khalighi S, Khodakaramian G. Biocontrol of Meloidogyne javanica inducing olive root-knot under green-house conditions and by use of Fluorescent Pseudomonads. Iran J Plant Prot Sci. 2012;43(2):323–32.Search in Google Scholar

[228] Khalili E, Sadravi M, Naeimi SH, Khosravi V. Biological control of rice brown spot with native isolates of three Trichoderma species in greenhouse. 20th Iranian Plant Protection Congress; 2012a. p. 301.10.1590/S1517-83822012000100035Search in Google Scholar

[229] Khalili E, Javed MA, Huyop F, Rayatpanah S, Jamshidi S, Wahab RA. Evaluation of Trichoderma isolates as potential biological control agent against soybean charcoal rot disease caused by Macrophomina phaseolina. Biotechnological Equip. 2016;30(3):479–88.10.1080/13102818.2016.1147334Search in Google Scholar

[230] Khalili E, Sadravi M, Naeimi S, Khosravi V. Biological control of rice brown spot with native isolates of three Trichoderma species. Braz J Microbiology. 2012b;43(1):297–305.10.1590/S1517-83822012000100035Search in Google Scholar

[231] Khalili E, Sadravi M. Biological control of rice sheath blight pathogen with three Trichoderma species isolates in vitro. 18th Iranian Plant Protection Congress; 2008. p. 334.Search in Google Scholar

[232] Kharazian ZA, Jouzani GS, Aghdasi M, Khorvash M, Zamani M, Mohammadzadeh H. Biocontrol potential of Lactobacillus strains isolated from corn silages against some plant pathogenic fungi. Biol Control. 2017;110:33–43.10.1016/j.biocontrol.2017.04.004Search in Google Scholar

[233] Khazaee FA, Etetsarian HR, Roustaee A, Alizadeh-Aliabadi A. Potential biocontrol of Penicillium expansum in apple with some Pseudomonas fluorescens isolates. 18th Iranian Plant Protection Congress; 2008. p. 352.Search in Google Scholar

[234] Kheiri A, Etebarian HR, Roustae A, Khodakaramian Gh, Aminian H. Study of possibility of biological control of charcoal rot on melon (Macrophomina phaseolina) by Pseudomonas fluorescens isolates. J Agric. 2009;11(1):35–46.Search in Google Scholar

[235] Khezri M, Manafi Shabestari M. Biological control of wheat Take-all by native probiotic. Bacillus subtilis. 22th Iranian Plant Protection Congress; 2016. p. 288.Search in Google Scholar

[236] Khezri M, Ahmadzadeh M, Jouzani GS, Behboudi K, Ahangaran A, Mousivand M, et al. Characterization of some biofilm-forming Bacillus subtilis strains and evaluation of their biocontrol potential against Fusarium culmorum. J Plant Pathol. 2011;373–82.Search in Google Scholar

[237] Khezri S, Ahmadzadeh M, Sharifi R, Ahangaran A. Screening of some isolates of Pseudomonas fluorescens against Sclerotinia sclerotiorum on sunflower. 19th Iranian Plant Protection Congress; 2010. p. 830.Search in Google Scholar

[238] Khodaei M, Hemmati R, Rouhani H, Sarafraz Nikou F. Biological control of Fusarium root rot of bean using native Trichoderma isolates. 20th Iranian Plant Protection Congress; 2012. p. 302.Search in Google Scholar

[239] Khodakaramian A, Heydari A, Balestra GM. Evaluation of Pseudomonads bacterial isolates in biological control of citrus bacterial canker disease. Int J Agric Res. 2008;3(4):268–72.10.3923/ijar.2008.268.272Search in Google Scholar

[240] Khodakaramian G, Zafari D. Identification of fluorescent pseudomonads isolated from potato rhizosphere and assessment of their antagonistic activity towards Pectobacterium carotovorum under field condition. Appl Entomol Phytopathol. 2010;77(2):1–18.Search in Google Scholar

[241] Khodakaramian G. Characterization of fluorescent pseudomonads isolated from citus phyllosphere in southern Iran and evaluation of their antagonistic activity against bacterial inducing citrus canker disease. Iran J Agric Sci. 2004;35(4):911–91.Search in Google Scholar

[242] Khodaygan B, Etebarian HR, Khodakaramian G, Torabi M. Biological control of wheat common bunt (Tilletia laevis L10) by some bacterial antagonist. 16th Iranian Plant Protection Congress; 2004. p. 45.Search in Google Scholar

[243] Khodaygan P, Etebarian HR, Khodakaramian G, Torabi M. Investigation of possibility of biocontrol of common covered smut disease in wheat by several isolates of Pseudomonas. Iran J Agric Sci. 2006;37(4):707–17.Search in Google Scholar

[244] Khomeini K, Daneshjoo R, Nasr MR, Bakhtiar M. Biocontrol disease agents exposed to pathogens of chickpea by different combinations under field condition. Int Scholars J. 2016;2(2):28–32.Search in Google Scholar

[245] Khorasani GA, Alizadeh A, Safaie N. Biological control of Fusarium wilt of potato using antagonistic strains of bacteria. Plant Dis. 2008;44(1):1–21.Search in Google Scholar

[246] Khorasani-Aghazadeh A, Alizadeh A, Safaei N. Biological control of Fusarium oxysporum f.sp. tuberosi using antagonistic mutant and wild type bacteria. 17th Iranian Plant Protection Congress; 2006. p. 218.Search in Google Scholar

[247] Khosravi M, Abdollahi M, Sadravi M. Effect of Metarhizium anisopliae and Trichoderma harzianum on root knot nematode Meloidogyne javanica. Biol Control Pests Plant. 2015;3(1):67–76.Search in Google Scholar

[248] Khosro-Anjom E, Sharzei A, Sahebani N, Mohammadifar M. Biological control of Fusarium root rot of beans by Trichoderma hamatum and Pseudomonas fluorescens treatments. 22th Iranian Plant Protection Congress; 2016. p. 293.Search in Google Scholar

[249] Kia Sh, Rahnama K. Study on the efficiency of Trichoderma isolates in controlling charcoal rot disease of soybean caused by Macrophomina phaseolina under greenhouse conditions. Biocontrol Plant Prot. 2016;4(1):1–10.Search in Google Scholar

[250] Kloepper JW, Leong J, Teintze M, Schiroth MN. Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature. 1980;286:885–86.10.1038/286885a0Search in Google Scholar

[251] Köhl J, Kolnaar R, Ravensberg WJ. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front plant Sci. 2019;10:845.10.3389/fpls.2019.00845Search in Google Scholar PubMed PubMed Central

[252] Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 2011;12(4):40.10.1186/gb-2011-12-4-r40Search in Google Scholar PubMed PubMed Central

[253] Kumar A, Saini P, Shrivastava JN. Production of peptide antifungal antibiotic and biocontrol activity of Bacillus subtilis. Indian J Exp Biol. 2008;47:57–62.Search in Google Scholar

[254] Lagzian A, Saberi-Riseh R, Khodaygan P, Sedaghati E, Dashti H. Isolation identification and screening for antifungal activity of fluorescent pseudomonads against Gaeumannomyces graminis var. tritici the causal agent of take-all. 20th Iranian Plant Protection Congress; 2012. p. 312.Search in Google Scholar

[255] Lam ST, Gaffney TD. Biological activities of bacteria used in plant pathogen control. In: Chet I. editor. Biotechnology in Plant Disease Control. New York: John Wiley; 1993. p. 291–320.Search in Google Scholar

[256] Leong SA, Expert D. Siderophores in plant pathogen interactions. In: Kosuge T, Nester EW, eds. Plant-Microbe Interactions Molecular and Genetic Perspectives. Vol 3, New York: McGraw-Hill; 1989. p. 62–83.Search in Google Scholar

[257] Loper JE, Buyer JS. Siderophores in microbial interactions on plant surfaces. Mol Plant Microbe Interact. 1991;4:5–13.10.1094/MPMI-4-005Search in Google Scholar

[258] López-Mondéjar R, Ros M, Pascual JA. Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biol Control. 2011;56:59–66.10.1016/j.biocontrol.2010.10.003Search in Google Scholar

[259] Madloo PB, Behboudi K, Tohidfar M, Jouzani GS, Ahmadzadeh M. Response of some important Iranian wheat cultivars to Fusarium culmorum under genetic diversity of indigenous bio-control agent fluorescent Pseudomonas spp. Aust. J Crop Sci. 2013;7(7):1003.Search in Google Scholar

[260] Maghsodloo R, Ghorbani-Nasrabadi R, Razavi SE, Ebrahimi T. Evaluation of antagonistic activity of Azotobacter isolates on Gaeumannomyces graminis var. tritici causal agent of take- all disease in vitro. 18th Iranian Plant Protection Congress; 2008. p. 389.Search in Google Scholar

[261] Mahdikhani Moghadam E, Rouhani H, Flahi Rastegar M. Biological control of sugar beet cyst forming nematode with Trichoderma under in vitro and greenhouse condition. J Water Soil Sci. 2009;13(48):301–12.Search in Google Scholar

[262] Mahdikhani Moghadam E, Rouhani H. Effect of isolates of Trichoderma harzianum, T. virens and Bacillus subtilis for controlling Heterodera schachtii in field conditions. J Plant Prot. 2011;26(1):75–81.Search in Google Scholar

[263] Mahdizadehnaraghi R, Heydari A, Zamanizadeh HR, Rezaee S, Nikan J. Biological control of garlic (Allium) white rot disease using antagonistic fungi-based bioformulations. J Plant Prot Res. 2015;55(2):136–41.10.1515/jppr-2015-0017Search in Google Scholar

[264] Majzoob S, Karegar A, Taghavi M, Hamzehzarghani H. Evaluation of rhizobacteria for antagonistic activity against root-knot nematode Meloidogyne javanica on cucumber under greenhouse condition. Iran J Plant Pathol. 2012;48(1):27–9.Search in Google Scholar

[265] Maleki Ziyarati H, Saheban N, Rahnama K. Biological control of root- knot nematode Meloidogyne javanica by Trichoderma harzianum and the study of peroxidase activity changes in tomato. Iran J Plant Prot Sci. 2009;40(1):25–33Search in Google Scholar

[266] Malik RJ, Dixon MH, Bever JD. Mycorrhizal composition can predict foliar pathogen colonization in soybean. Biol Control. 2016;103:46–53.10.1016/j.biocontrol.2016.08.004Search in Google Scholar

[267] Maloy OC. Plant Disease Control: Principles and Practice. New York: John Wiley Sons Inc; 1993. p. 346.Search in Google Scholar

[268] Mansoori B. Evaluation of antagonistic effects of Penicillium polonicum on a number of soil-borne of wheat under laboratory and greenhouse condition. 13th Iranian Plant Protection Congress; 1998. p. 51.Search in Google Scholar

[269] Mansoori M, Heydari A, Hassanzadeh N, Rezaee S, Naraghi L. Evaluation of Pseudomonas and Bacillus bacterial antagonists for biological control of cotton Verticillium wilt disease. J Plant Prot Res. 2013;53(2):154–7.10.2478/jppr-2013-0023Search in Google Scholar

[270] Mansouripour SM, Alizadeh A, Safaie N. Biological control of Sclerotinia stem rot of canola using wild type and derived antibiotic resistant bacterial antagonists. 18th Iranian Plant Protection Congress; 2008. p. 388.Search in Google Scholar

[271] Manulis S, Epstein E, Shafrir H, Lichter A, Barash I. Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp. Microbiology. 1994;140:1045–50.10.1099/13500872-140-5-1045Search in Google Scholar PubMed

[272] Marefat A, Rand Rahimian H. Identity and population dynamics of epiphytic bacteria of wheat in Mazandaran Tehran and Isfahan and preliminary studies on the antagonistic effects of representative strains on biological control of leaf streak caused by Xanthomonas translucens pv. cerealis. 13th Iranian Plant Protection Congress; 1998. p. 58.Search in Google Scholar

[273] Masudi Sh, Shahidi GH. In vitro evaluation of antagonistic activity of Talaromyces flavus against Rosellinia necatrix the causal agent of white root rot disease. 20th Iranian Plant Protection Congress; 2012. p. 257.Search in Google Scholar

[274] Mazzola M, Cook RJ. Effects of fungal root pathogens on the population dynamics of biocontrol strains of fluorescent pseudomonads in the wheat rhizosphere. Appl Environ Microbiology. 1991;57(8):2171–78.10.1128/aem.57.8.2171-2178.1991Search in Google Scholar PubMed PubMed Central

[275] McSpadden BB, Fravel DR. Biological control of plant pathogens: research commercialization and application in the USA. Online. Plant Health Prog. 2002;3(1):1–18.Search in Google Scholar

[276] Mehrabi Koshki M, Zafari DM, Rouhani H, Ghalandar M. Evaluation of effect of Trichoderma isolates mustard flour two biological commercial products in control of take-all disease. Agric Sci. 2007;17(3):197–208.Search in Google Scholar

[277] Mehrabi Koshki M, Zafari D, Sharif Nabi B. Control of wheat common bunt by mustard flour Trichoderma isolates and biological materials. J Water Soil Sci. 2009;13(47):741–8.Search in Google Scholar

[278] Merat A, Mirhoseini SA, Rohani H. Study on antagonistic effect of Trichoderma spp. from Guilan province on Sclerotinia sclerotiorum causal agent of bud and twig die-back of mulberry trees. 14th Iranian Plant Protection Congress; 2000. p. 336.Search in Google Scholar

[279] Mihajlović M, Rekanović E, Hrustić J, Grahovac M, Tanović B. Methods for management of soilborne plant pathogens. Pestic Fitomed. 2017;32(1):9–24.10.2298/PIF1701009MSearch in Google Scholar

[280] Mirhosaini Sa, Izadyar M, Rohani H. Study on the antagonistic activity of Trichoderma and Gliocladium species on Sclerotium rolfsii causal agent of stem rot of groundnut. 13th Iranian Plant Protection Congress; 1998. p. 109.Search in Google Scholar

[281] Mirkhani F, Alaei H, Mohhammadi A, Haghdel M, Kahnougi H. Identification of Trichoderma species isolated from soil of pistachio orchards in Iran and in vitro evaluation for biological control of Phytophthora drechsleri the causal agent of pistachio gummosis. 20th Iranian Plant Protection Congress; 2012. p. 291.Search in Google Scholar

[282] Mirzaie M, Aminian H, Alizadeh A, Rustaee A, Gholamnejad J. The study of biological control of Erwinia amylovora the causal agent of pear fire blight by some antagonistic bacteria in Damavand. 18th Iranian Plant Protection Congress; 2008. p. 373.Search in Google Scholar

[283] Moayedi G, Mostowfizadeh-Ghalamfarsa R. Antagonistic activities of Trichoderma spp. on Phytophthora root rot of sugar beet Iran. Agric Res. 2011;29(2):21–38.Search in Google Scholar

[284] Moazenian S, Aminian H, Etebarian HR, Sahebani N. Biological control of Phaseolus vulgaris damping-off caused by Rhizoctonia solani using Streptomyces microflavus (S6) in greenhouse condition. 20th Iranian Plant Protection Congress; 2012a. p. 299.Search in Google Scholar

[285] Moazenian S, Aminian H, Etebarian HR, Ghasemi A, Sahebani N. Isolation and characterization of Streptomyces microflavus (A3) and evaluation of antagonistic effects against Rhizoctonia solani the causal agent of common bean damping-off in vitro. 20th Iranian Plant Protection Congress; 2012b. p. 289.Search in Google Scholar

[286] Mohammadi K, Etebaian HR, Rahimian H, Ghalandar M. Biological control of wheat (Bipolaris sorokiniana) by antagonistic bacteria isolated from wheat rhizosphere. 16th Iranian Plant Protection Congress; 2004. p. 37.Search in Google Scholar

[287] Mohammadi K, Etebarian H, Rahimian H, Ghalandar M. Biological control of common root rot of wheat by antagonistic bacteria isolated from wheat rhizosphere. Iran J Plant Pathol. 2005;41(3):383–402.Search in Google Scholar

[288] Mohammadi P, Kotan R, Tozlu E. The investigation of citrus green mold biological control with Penicillium digitatum agent by antagonistic bacteria. 21th Iranian Plant Protection Congress; 2014. p. 44.Search in Google Scholar

[289] Mohammadi S, Ghanbari L. In vitro Antagonistic Mechanisms of Trichoderma spp. and Talaromyces flavus to Control Gaeumannomyces graminis var. tritici the causal agent of wheat take-all disease. Turkish J Agric-Food Sci Technol. 2015;3(8):629–34.10.24925/turjaf.v3i8.629-634.271Search in Google Scholar

[290] Mohammadi S, Mansoori B, Zamani-Zahed HR, Heydari A. Biological control of Rhizoctonia solani the causal agent of wet root of chickpea in greenhouse conditions. 16th Iranian Plant Protection Congress; 2004. p. 189.Search in Google Scholar

[291] Mokhtari S, Navaz-allah Sahebani NA, Etebarian HR. Biological control of root-knot nematode (Meloidogyne javanica) by Pseudomonas fluorescens CHA0 and Trichoderma harzianum BI in tomato. Biol Control Pests Plant Dis. 2015;3(2):117–26.Search in Google Scholar

[292] Mokhtari S, Montazeri R, Sahebani N, Etebarian HR. Study of Biological control and systemic induction of polyphenol oxidase and catalase enzymes activity in tomato plant infected with root-knot nematode by Pseudomonas fluorescens CHA0 antagonist. 18th Iranian Plant Protection Congress; 2008. p. 262.Search in Google Scholar

[293] Montakhabi MK, Rahimian H, Falahati Rastegar M, Jafarpour B. in vitro investigation on biocontrol of Xanthomonas axonopodis pv. citri cause of citrus bacterial canker by citrus antagonistic bacteria. J Plant Prot. 2010;24(4):368–76.Search in Google Scholar

[294] Montazernia B, Rahnama K, Barari H, Naeemi Sh. Evaluation of Trichoderma spp. isolated from soybean field against of Macrophomina phaseolina the causal agent of charcoal rot disease. 18th Iranian Plant Protection Congress; 2008. p. 379.Search in Google Scholar

[295] Mostofizadeh-Ghalamfarsa R, Banihashemi Z, Taghavi SM. Antagonistic mechanisms of wheat rhizosphere fluorescens Pseudomonads and their inhibition on root pathogenic Fusarium species in Fars province. 15th Iranian Plant Protection Congress; 2002. p. 25.Search in Google Scholar

[296] Motamedi H, Zahedi E, Abadi AZM. Optimizing conditions for the production of antifungal agents using the native Bacillus cereus SB15 Feyz. J Kashan Univ Med Sci. 2017;21(1):9–18.Search in Google Scholar

[297] Mousavi Mirak SS. The evaluation of inhibitory effect of in sugar beet rhizosphere antagonistic bacteria on the growth of Cercospora beticola fungi the causal agent of sugar beet cercospora leaf spot. 21th Iranian Plant Protection Congress; 2014. p. 48.Search in Google Scholar

[298] Mousavi SA, Rahimiyan H, Zohour E, NasrollaH-Nejad S. Investigation of antagonistic effects of some strains Pseudomonas fluorescens on Clavibacter michiganensis subsp. michiganensis in vitro. 18th Iranian Plant Protection Congress; 2008a. p. 371.Search in Google Scholar

[299] Mousavi SA, Rahimiyan H, Zohour E, NasrollaH-Nejad S. Investigation of antagonistic effects of some strains of Pseudomonas fluorescens on Pseudomonas syringae pv. tomato in vitro. 18th Iranian Plant Protection Congress; 2008b. p. 370.Search in Google Scholar

[300] Naeimi S, Okhovvat SM, Javan-Nikkhah M, Vágvölgyi C, Khosravi V, Kredics L. Biological control of Rhizoctonia solani AG1-1A the causal agent of rice sheath blight with Trichoderma strains. Phytopathol Mediterr. 2010;49(3):287–300.Search in Google Scholar

[301] Naeimi Sh, Zare R. Evaluation of indigenous Trichoderma spp. isolates in biological control of Botrytis cinerea the causal agent of strawberry gray mold disease. J Biocontrol Plant Prot. 2013;2(2):55–74.Search in Google Scholar

[302] Naghed H, Sadravi M, Kazemi S. Biological control of chickpea blight with some isolates of three species of Trichoderma. Biol Control Pests Plant Dis. 2016;5(1):123–7.Search in Google Scholar

[303] Naher L, Yusuf UK, Ismail A, Hossain K. Trichoderma spp.: a biocontrol agent for sustainable management of plant diseases. Pak J Botany. 2014;46(4):1489–93.Search in Google Scholar

[304] Najmeh A, Dostmorad Za, Mansoureh M. Combination of Trichoderma species and Bradyrhizobium japonicum in control of Phytophthora sojae and soybean growth. J Crop Prot. 2012;1(1):67–79.Search in Google Scholar

[305] Naraghi L, Heydari A, Afshari Azad H, Sharifi K. Antagonistic effects of Talaromyces flavus on some soil-borne pathogens of potato tomato and greenhouse cucumber. 20th Iranian Plant Protection Congress; 2012a. p. 278.Search in Google Scholar

[306] Naraghi L, Heydari A, Karimi Roozbehani A, Ershad J. Isolation of Talaromyces flavus from cotton fields in Gorgan area and investigation of its antagonistic effects against Verticillium dahliae causal agent of cotton wilt. 14th Iranian Plant Protection Congress; 2000. p. 275.Search in Google Scholar

[307] Naraghi L, Heydari A, Rezaee S, Razavi M. Biological control of wilt disease caused by Verticillium albo-atrum in potato tomato and greenhouse cucumber by Talaromyces flavus. 20th Iranian Plant Protection Congress; 2012b. p. 297.Search in Google Scholar

[308] Naraghi L, Heydari A, Rezaee M, Razavi M, Jahanifar H. Biological control of tomato Verticillium wilt disease by Talaromyces flavus. 19th Iranian Plant Protection Congress; 2010. p. 920.10.2478/v10045-010-0061-xSearch in Google Scholar

[309] Naserinasab F, Saheban N, Etebarian HR. Biological control of root knot nematode of tomato Meloidogyne javanica with Trichoderma harzianum BI and salicylic acid in greenhouse and an investigation of their effect on induction of phenolic compounds and total flavonoids on tomato. Iran J Plant Prot Sci. 2012;43(1):121–31.Search in Google Scholar

[310] Nasir Hussein A, Abbasi S, Sharifi R, Jamali S. The effect of biocontrol agents consortia against Rhizoctonia root rot of common bean Phaseolus vulgaris. J Crop Prot. 2018;7(1):73–85.Search in Google Scholar

[311] Nasiri M, Soleimani MJ, Zafari D. Study on possibility of using Trichoderma isolates on biocontrol of potato brown spot caused by Alternaria alternata. 20th Iranian Plant Protection Congress; 2012. p. 270.Search in Google Scholar

[312] Nasrolah Nejad F, Rahnama K. Study of antagonistic effects of Bacillus bacterium on Sclerotinia sclerotiorum the causal agent of stem rot disease in canola. 18th Iranian Plant Protection Congress; 2008. p. 360.Search in Google Scholar

[313] Nasrolah Nejad F, Rahnama K, Zafari D, Sadravi M, Nasrolah Nejad S, Vakili Zaraj Z. Study of antagonistic assessment of Trichoderma species on the causal agent of white stem rot of canola. J Agric Sci Nat Resour. 2009;16(1b):1–11.Search in Google Scholar

[314] Nasrollahi Omran A, Beighy Firooz Jaei F, Sangi M. Biological control of green and blue mold agents in oranges by citrus fruit epiphytic microbes in north of Iran. Plant Prot J. 2011;3(4):377–91.Search in Google Scholar

[315] Nazari F, Momeni H, Rabani Nasab H. Antagonistic effects of Pseudomonas putida strains P5 and P13 formulated in biological fertilizers against Rhizoctonia solani (sugar beet root rot and seedling damping off) and Fusarium oxysporum f sp tuberosi (Fusarium dry rot of potato). 20th Iranian Plant Protection Congress; 2012. p. 269.Search in Google Scholar

[316] Nazari F, Safaie N, Soltani BM, Shams-Bakhsh M, Sharifi M. Study of flavonoids produced by Bacillus subtilis due to its biocontrol effect on Agrobacterium tumefaciens in tobacco plants. 22th Iranian Plant Protection Congress; 2016. p. 272.Search in Google Scholar

[317] Nazerian E, Javadi S, Mirabolfathi M, Mohamadalian Y. Study on possibility of biocontrol on ornamental plants root rot caused by Phytophthora sp. 18th Iranian Plant Protection Congress; 2008. p. 358.Search in Google Scholar

[318] Nega A. Review on concepts in biological control of plant pathogens. J Biol Agri Healthc. 2014;4(27):33–54.Search in Google Scholar

[319] Niknejad Kazempour M, Pedramfar H, Elahinia SA. Effect of certain fungicides and isolates of antagonistic fungi on Rhizoctonia solani the causal agent of rice sheath blight. J Water Soil Sci. 2002;6(4):151–58.Search in Google Scholar

[320] Niknejad K, Sharifi-Tehrani A, Okhovat M. Effect of antagonistic fungi Trichoderma spp. on the control of Fusarium wilt of tomato caused Fusarium oxysporum f.sp. lycopersici under greenhouse conditions. Iran J Agric Sci. 2000;31(1):31–37.Search in Google Scholar

[321] Niknejad-Kazempour M, Pedramfar H, Elahinia SA. Effect of some fungicides and certain isolates antagonistic fungi to control rice sheath blight caused by Rhizoctonia solani under in vitro and greenhouse conditions. 14th Iranian Plant Protection Congress; 2000. p. 248.Search in Google Scholar

[322] Niknejad-Kazempour M. Biological control of Rhizoctonia solani the causal agent of rice sheath blight with Pseudomonas fluorescens in greenhouse and field conditions. 16th Iranian Plant Protection Congress; 2004a. p. 88.10.3923/ppj.2004.88.96Search in Google Scholar

[323] Niknejad-Kazempour M, Anvary M, Elahinia E. Biological control of Fusarium moniliform the casual agent of collar and root rot of rice by antagonistic bacteria. 16th Iranian Plant Protection Congress; 2004b. p. 87.Search in Google Scholar

[324] Niknejad-Kazempour M, hamran E, Merat A. Biological control of the causal agents of root rot of mulberry by antagonistic bacteria. 16th Iranian Plant Protection Congress; 2006. p. 347.Search in Google Scholar

[325] Ningaraju TM. Cloning and characterization of chitinase gene/s from native isolates of Msc thesis Serratia marcescens. Dharwad: UAS; 2006. p. 144.Search in Google Scholar

[326] Noorizadeh S, Golmohammadi M, Jamali S. Biological control of important citrus pathogenic fungi by some isolated actinomycetes from citrus rhizosphere. 20th Iranian Plant Protection Congress; 2012. p. 303.Search in Google Scholar

[327] Norouzi K, Khara J, Ghosta Y. Effects of three Glomus species as biocontrol agents against Verticillium-induced wilt in cotton. J Plant Prot Res. 2009;49(2):185–9.Search in Google Scholar

[328] Norouzian SJ, Etebarian HR, Khodakaramian G, Torabi M, Karimi N. Biological control of crown rot of wheat with Pseudomonas fluorescens, Bacillus subtilis and Streptomyces sp. 23th Iranian Plant Protection Congress; 2018. p. 877.Search in Google Scholar

[329] Norouzian SJ, Etebarian HR, Khodakaramian G, Torabi M. Isolation and selection bacterial antagonists for biological control of Fusarium graminearum. 15th Iranian Plant Protection Congress; 2002. p. 179.Search in Google Scholar

[330] Nosrati S. Investigation on The Ability of Trichoderma spp. existent in the soil of cucumber greenhouses of Yazd province to control Fusarium wilt agent in vitro condition. Biol Control Pests Plant Dis. 2018;7(1):99–102.Search in Google Scholar

[331] Nourozian J, Etebarian HR, Khodakaramian G. Biological control of Fusarium graminearum on wheat by antagonistic bacteria Songklanakarin. J Sci Technol. 2006;28(1):29–38.Search in Google Scholar

[332] Ojaghian SMR, Zafari D, Khodakaramian G. Biological control of Sclerotinia sclerotiorum the causal agent of potato white mold by different Trichoderma spp. and Coniothyrium minitans. J Agric Sci Sustain Prod. 2010;20(1):107–19.Search in Google Scholar

[333] Ojaghian MR, Zafari D, Khodakaramian Gh. Biological control of Sclerotinia sclerotiorum the causal agent of potato white mold in Hamedan province. 18th Iranian Plant Protection Congress; 2008. p. 345.Search in Google Scholar

[334] Okhovat M. In vitro antagonistic effects of Trichoderma spp. on several soil-borne plant pathogenic fungi. J Sci Islamic Repub Iran. 1997;8(2):86–95.Search in Google Scholar

[335] Okhovat M, Zafari DM, Karimi-Roosbahani AR, Rohani. Evaluation of antagonistic effects of Trichoderma on Colletotrichum coccodes isolated from potato. 11th Iranian Plant Protection Congress; 1994. p. 149.Search in Google Scholar

[336] Okhowat M, Karampour F. Effect of some isolates of antagonistic fungi on the control of chickpea black root rot caused by Fusarium solani under greenhouse condition. Iran J Agric Sci. 1996;27(2):37–43.Search in Google Scholar

[337] Olanrewaju OS, Babalola OO. Streptomyces: implications and interactions in plant growth promotion. Appl Microbiol Biotechnol. 2019;103(3):1179–88.10.1007/s00253-018-09577-ySearch in Google Scholar PubMed PubMed Central

[338] Omidi Nasab M, Khodakaramian G. Inhibitation of alfalfa endophytic bacteria against Clavibacter michiganensis subsp. insidiosus causal agent of wilt disease in in vitro and greenhouse conditions. Biocontrol Plant Prot. 2017;5(1):1–13.Search in Google Scholar

[339] Ommati F, Khavaziand K, Akhyani A. A study on effect of Fluorescent Pseudomonads in controlling Fusarium wilt of potato in Semnan province. 18th Iranian Plant Protection Congress; 2008. p. 295.Search in Google Scholar

[340] Ommati F, Zaker. In vitro and greenhouse evaluations of Trichoderma isolates for biological control of potato wilt disease (Fusarium solani). Arch Phytopathology Plant Protect. 2012;45(14):1715–23.10.1080/03235408.2012.702467Search in Google Scholar

[341] Ommati F, Zaker M, Mohammadi A. Biological control of Fusarium wilt of potato (Fusarium oxysporum f. sp. tuberosi) by Trichoderma isolates under field condition and their effect on yield. J Crop Prot. 2013;2(4):435–42.Search in Google Scholar

[342] Omrani Kh, Minassian V, Farokhnejad EJ. Biological control of Sclerotinia sclerotiorum (Lib) de Bary the causal agent of aubergine white mold. 14th Iranian Plant Protection Congress; 2000. p. 97.Search in Google Scholar

[343] Oostendorp M, Sikora RA. Seed treatment with antagonistic rhizobacteria for the suppression of Heterodera schachtii early root infection of sugar beet. Rev de nematologie. 1989;12:77–83.Search in Google Scholar

[344] Padasht Dehkaei F, Mansouri Jajaei SH, Rouhani H. Effects of paddy soil antagonistic microorganisms of Guilan on the causal agent of rice bakanae disease. J Water Soil Sci. 2004;8(1):213–21.Search in Google Scholar

[345] Padasht DF, Izadyar M. Study On the biological control of rice blast disease in the field condition. J Agric Sci Nat Resour. 2007;13(6):84–92.Search in Google Scholar

[346] Padasht-Dehkaei F, Popushoi I, Izadyar M, Khodakaramian G. Biological control of rice blast disease in the field conditions. 16th Iranian Plant Protection Congress; 2004. p. 106.Search in Google Scholar

[347] Pakdaman BS, Goltapeh EM, Soltani BM, Talebi AA, Nadepoor M, Joanna SK, et al. Toward the quantification of confrontation (Dual Culture) test: a case study on the biological control of Pythium aphanidermatum with Trichoderma asperelloides. J Biofertil Biopesticides. 2013;4(2):137–41.10.4172/2155-6202.1000137Search in Google Scholar

[348] Pakniat M, Banihashemi Z. Biological control of root knot nematode (Meloidogyne javanica) by Paecilomyces lilacinus on tomato. 15th Iranian Plant Protection Congress; 2002. p. 107.Search in Google Scholar

[349] Pal KK, McSpadden GB. Biological Control of Plant Pathogens. The Plant Health Instructor; 2006.10.1094/PHI-A-2006-1117-02Search in Google Scholar

[350] Palaniyandi SA, Damodharan K, Yang SH, Suh JW. Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’tomato plants. J Appl Microbiology. 2014;117(3):766–73.10.1111/jam.12563Search in Google Scholar PubMed

[351] Palizi P, Goltapeh E, Pourjam E, Safaie N. Potential of oyster mushrooms for the biocontrol of sugar beet nematode (Heterodera schachtii). J Plant Prot Res. 2009;49(1):27–34.10.2478/v10045-009-0004-6Search in Google Scholar

[352] Panjehkeh N, Saberyan A, Afshari Azad H, Salari M. Biological control of Phoma lingam the causal agent of rapeseed blackleg by Trichoderma and Bacillus subtilis isolates. Iran J Plant Pathol. 2011;47(1):19–30.Search in Google Scholar

[353] Parveen S, Wani AH, Bhat MY, Koka JA. Biological control of postharvest fungal rots of rosaceous fruits using microbial antagonists and plant extracts. Czech Mycology. 2016;98(1):41–66.10.33585/cmy.68102Search in Google Scholar

[354] Patten CL, Glick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiology. 2002;68(8):3795–801.10.1128/AEM.68.8.3795-3801.2002Search in Google Scholar PubMed PubMed Central

[355] Peighami-Ashnaei S, Sharifi-Tehrani A, Ahmadzadeh M, Behboudi K. Interaction of different media on production and biocontrol efficacy of Pseudomonas fluorescens P-35 and Bacillus subtilis B-3 against grey mould of apple. J Plant Pathol. 2009a;65–70.Search in Google Scholar

[356] Peighami-Ashnaei S, Sharifi-Tehrani A, Ahmadzadeh M, Behboudi K. Screening of Pseudomonas and Bacillus isolates for potential biocontrol of the damping-off of bean (Phaseolus coccineus). Commun Agric Appl Biol Sci. 2009b;74(3):745–8.Search in Google Scholar

[357] Peighamy-Ashnaei S, Sharifi-Tehrani A, Ahmadzadeh M, Behboudi K. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani the causal agent of bean damping-off. Commun Agric Appl Biol Sci. 2007;72(4):951–6.Search in Google Scholar

[358] Peyghami E, Babadoost M. Studying biological control of common and dwarf bunts of wheat. 12th Iranian Plant Protection Congress; 1996. p. 32.Search in Google Scholar

[359] Peyghami E, Nishabouri MR. Studying biological control of cucumber Fusarium wilt by Trichoderma harzianum Rifai. 13th Iranian Plant Protection Congress; 1998. p. 178.Search in Google Scholar

[360] Peyghami E. Antagonistic effects of several isolates of Trichoderma on fungi causing onion root rot East Azarbaidjan Province Iran. J Agric Sci. 2001;32:747–55.Search in Google Scholar

[361] Pourabdullah Sh, Binesh H. Biological control of rice sheat blight with antagonistic fungi. 11th Iranian Plant Protection Congress; 1994. p. 68.Search in Google Scholar

[362] Pourmehdi Alamdarlou R, Zaman Mirabadi A, Fakharian S. Antagonistic effect of Coniothyrium minitans on the sclerotia of Sclerotinia sclerotiourum in Mazandran province. 17th Iranian Plant Protection Congress; 2006. p. 469.Search in Google Scholar

[363] Raaijmakers JM, Mazzola M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev phytopathology. 2012;50:403–24.10.1146/annurev-phyto-081211-172908Search in Google Scholar PubMed

[364] Raeesi H, Djavaheri M, Taghavi SM. Biocontrol effect of Trichoderma species on disease severity of Magnaporthe grisea. 20th Iranian Plant Protection Congress; 2012a. p. 250.Search in Google Scholar

[365] Raeesi H, Djavaheri M, Taghavi SM. Biocontrol activity of T. harzianum against Botrytis cinerea in laboratory and greenhouse conditions. 20th Iranian Plant Protection Congress; 2012b. p. 266.Search in Google Scholar

[366] Rahanandeh H, Moshaiedy M. Potency evaluation of Pseudomonas aeruginosa and Pseudomonas fluorescens as biocontrol agents for root-knot nematodes in Iran. Int J Biosci. 2014;12:222–8.Search in Google Scholar

[367] Rahanandeh H, Khodakaramian G, Hassanzadeh N, Seraji A, Asghari SM. Evaluation of antagonistic Pseudomonas against root lesion nematode of tea. Int J Biosci. 2013;3(3):32–40.10.12692/ijb/3.3.32-40Search in Google Scholar

[368] Rahanandeh H, Khodakaramian G, Hassanzadeh N, Seraji A, Asghari SM, Tarang AR. Inhibition of tea root lesion nematode Pratylenchus loosi by rhizosphere bacteria. Online J Manag Syst. 2012;2(4):243–50.Search in Google Scholar

[369] Rahnama K, Cooke RC. Evaluation of mycoparasitism effect on oospores and sporangia of Pythium ultimum by Pythium oligandrum.13th Iranian Plant Protection Congress; 1998. p. 302.Search in Google Scholar

[370] Ramadan EM, AbdelHafez AA, Hassan EA, Saber FM. Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. Afr J Microbiol Res. 2016;10:486–504.10.5897/AJMR2015.7714Search in Google Scholar

[371] Ramezani H. Biological control of root-rot of eggplant caused by Macrophomina phaseolina American-Eurasian. J Agric Environ Sci Dubai. 2008;4:218–20.Search in Google Scholar

[372] Ramezani-Baghmishezad M, Sharifi-Tehrani A, Rohani H, Zakeri Z. Study on the effect of some antagonistic bacteria against Fusarium oxysporum the causal agent of basal and root rot in greenhouse and field conditions. 16th Iranian Plant Protection Congress; 2004. p. 239.Search in Google Scholar

[373] Ranjbar Chaharborj S, Shirzad A, Arzanlou M. Evaluation of the biocontrol ability of Pichia membranaefaciens yeast against Aspergillus tubingensis and Penicillium crustosum causing bunch rot disease in grapes. Biol Control Pests Plant Dis. 2016;5(1):97–110.Search in Google Scholar

[374] Ranjbar Sistani S, Behboudi K, Sharifi Tehrani A, Razavi M, Ghasemi A. Biological control of common root rot of wheat by fluorescent pseudomonads isolated from wheat rhizosphere. 19th Iranian Plant Protection Congress; 2010. p. 841.Search in Google Scholar

[375] Reddy KRK, Jyothi G, Sowjanya Ch, Kusumanjali K, Malathi N, Subramaniam G. Editors. Plant Growth-Promoting Actinomycetes: mass production delivery systems and commercialization in plant growth promoting Actinobacteria. Singapore: Springer; 2016. p. 287–98.10.1007/978-981-10-0707-1_19Search in Google Scholar

[376] Rezaei R, Alizadeh HR, Azadvar M, Salari K. Evaluation of Bacillus spp. isolates for biological control of Pythium aphanidermatum causal agent of cucumber damping-off. 22th Iranian Plant Protection Congress; 2016. p. 351.Search in Google Scholar

[377] Roodgar E, Foroutan A, Khosravi V, Eskandar IA, Naeimi Sh. Study on possibility of biological control of rice bakanae disease with Trichoderma isolates in Mazandaran province. 19th Iranian Plant Protection Congress; 2010. p. 844.Search in Google Scholar

[378] Roohabadi I, Rowhani H, Hemati Kakhki A, Mahdikhani Moghadam E. The in vitro evaluation of Trichoderma isolates for biological control of Bipolaris australiensis and Botrytis cinerea the causal agents of saffron corm rot. 20th Iranian Plant Protection Congress; 2012. p. 260.Search in Google Scholar

[379] Rostami SH, Maleki M, Shahriyari D, Farzaneh M. Investigation of the effect of Bacillus sp. antagonistic isolates on biological control of Sclerotinia sclerotiorum cucumber stem rot in vitro. 20th Iranian Plant Protection Congress; 2012. p. 310.Search in Google Scholar

[380] Rouhani H, Safari M. Study on antagonistic effect of Aspergillus niger on Pythium butleri. 13th Iranian Plant Protection Congress; 1998. p. 301.Search in Google Scholar

[381] Saberi-Riseh R, Fathi F. Biocontrol of Fusarium oxysporum in cucumber by some antagonist bacteria under drought stress. J Crop Prot. 2018;7(4):375–85.Search in Google Scholar

[382] Saberi-Riseh R, Sharifi-Tehrani A, Hejaroud GH, Mohammadi M. Antagonistic effects of several bacteria on Phytophthora citrophthora the causal agent of gummosis (root and crown rot) of pistachio. 16th Iranian Plant Protection Congress; 2004. p. 381.Search in Google Scholar

[383] Sadeghi B, Hatami N. Evaluation of antifungal activity of Streptomyces isolates against cucumber Fusarium rot. 20th Iranian Plant Protection Congress; 2012. p. 296.Search in Google Scholar

[384] Sadeghi B. Evaluation of Streptomyces isolates for biological control of Phytophthora parasitica the causal agent of citrus root rot. 20th Iranian Plant Protection Congress; 2012. p. 253.Search in Google Scholar

[385] Sadeghi B, Hatami N. Screening biological activities of soil-borne Streptomyces sp. against several phytopathogenic fungi. Arch Phytopathol Plant Prot. 2014;47(8):954–8.10.1080/03235408.2013.826542Search in Google Scholar

[386] Safaee D, Heydari A, Hesan A, Younesi H. Investigation of the possibility of biological control of sugar beet seedling damping-off and root rot disease in the field condition in Kermanshah province using Trichoderma harzianum and T. viride. 18th Iranian Plant Protection Congress; 2008. p. 308.Search in Google Scholar

[387] Safari Asl E, Rouhani H, Falahati Rastegar M. Study of antagonistic mechanisms of Bacillus spp. in biocontrol of cucumber root and foot rot caused by Pythium aphanidermatum in the Tonekabon fields. 19th Iranian Plant Protection Congress; 2010. p. 871.Search in Google Scholar

[388] Safari Motlagh MR, Mohammadian S. Biological control of rice brown spot disease caused by Bipolaris victoriae by some fungal isolates in the greenhouse and in vitro conditions. Biocontrol Plant Prot. 2016;3(2):11–25.Search in Google Scholar

[389] Safdarpour F, Khodakaramian G. Assessment of biocontrol ability of some tomato rhizosphere Bacillus spp. towards the causal agent of Verticillium wilts disease. 22th Iranian Plant Protection Congress; 2016. p. 303.Search in Google Scholar

[390] Sajadi S, Hasan ZN, Bahrami M, Khosravi V. A possible approach to biocontrol of rice sheath blight with some antagonistic bacteria. J Agric Sci. 2006;12(1):201–213.Search in Google Scholar

[391] Sajadi SA, Asemi H. Evaluation of biological control potential Trichoderma species against of tobacco collar rot in Mazandaran province. N Find Agriculture. 2008;2(3):253–70.Search in Google Scholar

[392] Sajjadi A, Hasanzadeh N, Bahrami M, Khosravi V. Studies the effects of some antagonistic bacteria against rice sheat blight on seed germination percentage and different rice growth stages. 16th Iranian Plant Protection Congress; 2004. p. 103.Search in Google Scholar

[393] Salari M, Hajian-Shahri M, RohaniH Farrokhi F, Ravan S. Biological control of Rhizoctonia solani (AG4) damping-off of sugar beet with Pythium oligandrum. 18th Iranian Plant Protection Congress; 2008a. p. 312.Search in Google Scholar

[394] Salari M, Salehi Jouzani Gh, Panjeke N, Mohamadipour M, Mousivand M. Evaluation of biocontrol potential Bacillus subtilis strains producing surfactin against Citrus anthracnose. 18th Iranian Plant Protection Congress; 2008b. p. 250.Search in Google Scholar

[395] Salari M, Shahidi Bonjar GH, Sadeghi B, Panjeke N, Aminnaii MM, Shakery T. Investigation biological control two strains of antifungal actinomycetes against Phytophthora parasitica and P. citrophthora in vitro and in vivo. Cond J Plant Prot. 2011;24(4):437–44.Search in Google Scholar

[396] Salehpour M, Etebarian HR, Roustaii MA, Khodakaramian Gh, Aminian H. Biological control of Bipolaris sorokiniana causal agent of common root rot of wheat by Trichoderma spp. and Streptomyces spp. 16th Iranian Plant Protection Congress; 2004. p. 55.Search in Google Scholar

[397] Samavat S, Heydari A, Zamanizadeh HR, Rezaee S, Aliabadi AA. A comparison between Pseudomonas aureofaciens (chlororaphis) and P. fluorescens in biological control of cotton seedling damping-off disease. J Plant Prot Res. 2014;54(2):115–21.10.2478/jppr-2014-0050Search in Google Scholar

[398] Sanei SJ, Ghobadi A. Interaction of antagonistic and pathogens in biological control of soybean root rot. 12th Iranian Plant Protection Congress; 1996. p. 112.Search in Google Scholar

[399] Sarani SA, Sharifi TA, Ahmadzadeh M, Javan NM. Biological control of canola rhizoctonia damping off by application of Burkholderia cepacia. Plant Prot (Sci J Agriculture). 2010;32(2):1–14.Search in Google Scholar

[400] Sarani SH, Sharifi Tehrani A, Ahmadzadeh M, Javan Nikkhah M. Application of Fluorescent Pseudomonads in biological control of Rhizoctonia solani causal agent of Colza. JWSS-Isfahan Univ Technol. 2008a;11(42):261–70.Search in Google Scholar

[401] Sarani ShA, Sharifi Tehrani A, Ahmadzadeh M, Javan Nikkhah M. The study of correlation between antifungal metabolites production of antagonistic bacteria and biological control of Rhizoctonia solani the causal agent of canola damping-off. 18th Iranian Plant Protection Congress; 2008b. p. 314.Search in Google Scholar

[402] Saravanakumar DA, Ciavorella D, Spadaro A, Garibaldi A, Gullino ML. Metschnikowia pulcherrima strain MACH1 out competes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion Postharvest. Postharvest Biol Technol. 2008;49:121–28.10.1016/j.postharvbio.2007.11.006Search in Google Scholar

[403] Sedaghatfar A, Hassanzadeh N, Heydari A, Foroutan AR. Suppression of Take-all disease of wheat by bacterial isolates of in Pseudomonas spp. greenhouse condition. 15th Iranian Plant Protection Congress; 2002. p. 17.Search in Google Scholar

[404] Selselehzakeri Sh, Akhavansepahi A, Rezapanah MR. An investigation on antifungal activity and compounds of Bacillus subtilis against some plant pathogenic fungi. 18th Iranian Plant Protection Congress; 2008. p. 299.Search in Google Scholar

[405] Shahbazi H, Behboudi K, Nikkhah MJ, Ahmadzadeh M. Detection of hcnAB and phlD genes in fluorescent pseudomonads biological control agent of Fusarium graminearum and studying their ability to ectorhizosphere colonization of wheat. Biol Control Pests Plant Dis. 2015;4(2):143–55.Search in Google Scholar

[406] Shahid S, Khan MR. Biological control of root-rot on mungbean plants incited by Macrophomina phaseolina through microbial antagonists. Plant Pathol J. 2016;15(2):27–39.10.3923/ppj.2016.27.39Search in Google Scholar

[407] Shahidi Bonjar GH, Aghighi S. Chitinolytic and microsclerostatic activity of Iranian strains of Streptomyces plicatus and Frankia sp. on olive isolate of Verticillium dahliae. Biotechnology. 2005;4(2):108–13.10.3923/biotech.2005.108.113Search in Google Scholar

[408] Shahidi Bonjar GH, Zamanian S, Aghighi S, Rahimian H, Masoumi H, Hoseini Pour A, et al. Antibacterial activity of Streptomyces coralus strain 63 and S. plicatus strain 101 against Ralstonia solanacearum and Pectobacterium carotovorum sub.sp. carotovorum. 17th Iranian Plant Protection Congress; 2006. p. 467.Search in Google Scholar

[409] Shahiri Tabarestani M, Flahati Rastegar M, Jafarpour B, Rohani H. Biological control of sugar beet Rhizoctonia root rot by Trichoderma, Gliocladium and Bacillus subtilis in in-vitro and in-vivo. 14th Iranian Plant Protection Congress; 2000. p. 65.Search in Google Scholar

[410] Shahiri TM, Falahati RM, Jafarpour B, Rouhani H. Investigation of antagonistic effect of Bacillus subtilis on biological control of sugar beet damping-off disease. J Sugarbeet. 2005;20(2):161–74.Search in Google Scholar

[411] Shahriari D, Naraghi L, Sarpeleh A, Hydrae A, Afshari Azad H. Decrease in the incidence of cucumber Fusarium wilt in Varamin greenhouses using Talaromyces flavus. 22th Iranian Plant Protection Congress; 2016. p. 270.Search in Google Scholar

[412] Shahriary D, Okhovat M, Rohani H. Biological control of Pythium ultimum the causal agent of chickpea seed-rot and damping-off by antagonistic fungi. 12th Iranian Plant Protection Congress; 1996. p. 147.Search in Google Scholar

[413] Shams M, Shahnavaz B. Evaluation of antimicrobial activity some of marine Streptomyces sp. against three plant pathogens. Biol Control Pests Plant Dis. 2017;6(1):73–82.Search in Google Scholar

[414] Sharifi-Tehrani A, Ahmadzadeh M, Sarani S, Farzaneh M. Powder formulation of Burkholderia cepacia for control of rape seed damping-off caused by Rhizoctonia solani. Commun Agric Appl Biol Sci. 2007;72(2):129–36.Search in Google Scholar

[415] Sharify A, Sharzei A, Ramshini HA. Isolation and identification and evaluation of biological control potential of Trichoderma citrinoviride isolates against root and crown rot of wheat. 22th Iranian Plant Protection Congress; 2016a. p. 362.Search in Google Scholar

[416] Sharify A, Sharzei A, Ramshini HA. Isolation and identification and evaluation of biological control potential of Trichoderma asperellum isolates against root and crown rot of wheat. 22th Iranian Plant Protection Congress; 2016b. p. 369.Search in Google Scholar

[417] Shetab-Booshehri SM, Zad J, Hejaroud GHA, Okhovat M, Farokhinezhad R. The effects of several fungicides and antagonistic fungi (Trichoderma spp.) on Mauginiella scaettae Cav the causal agent of date palm inflorescence rot (Khamej). 13th Iranian Plant Protection Congress; 1998. p. 227.Search in Google Scholar

[418] Shirazi K, NasrEsfahani M, Atabaki N, Mohsenzade Kermani A. Study of antagonistic effects of some fungi isolates and bioproducts in controlling sugar beet cyst nematode in the greenhouse. 22th Iranian Plant Protection Congress; 2016. p. 388.Search in Google Scholar

[419] Sikora RA. Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Annu Rev Phytopathology. 1992;30:245–70.10.1146/annurev.py.30.090192.001333Search in Google Scholar

[420] Sindhu SS, Sehrawat A, Sharma R, Dahiya A. Biopesticides: use of rhizosphere bacteria for biological control of plant pathogens. Def Life Sci J. 2016;1(2):135–48.10.14429/dlsj.1.10747Search in Google Scholar

[421] Sindhu SS, Rakshiya YS, Sahu G. Biological control of soil borne plant pathogens with rhizosphere bacteria. Pest Technol. 2009;3:10–21.Search in Google Scholar

[422] Soharabi M, Mohammadi H, Mohammadi AH. Effects of two arbuscular mycorrhizal fungi Glomus mossae and Glomus intraradices on pea root rot disease caused by Fusarium solani f.sp. pisi under greenhouse conditions. Biol Control Pests Plant Dis. 2014;2(2):129–37.Search in Google Scholar

[423] Soltani H, Zafari D, Rouhani H. A study on biological control of the crown root and tuber fungal diseases of potato by Trichoderma harzianum under in-vivo and field condition in Hamadan. Agric Res. 2006;5(3):13–25.Search in Google Scholar

[424] Soltanzadeh M, Soltani Nejad M, Shahidi Bonjar GH. Application of soil‐borne actinomycetes for biological control against Fusarium wilt of chickpea (Cicer arietinum) caused by Fusarium solani f.sp. pisi. J Phytopathology. 2016;164(11–12):967–78.10.1111/jph.12517Search in Google Scholar

[425] Soofi E, Safaie N, Shahbazi S. Evaluation of antagonistic properties of Trichoderma viride mutants against some fungal plant pathogens. 20th Iranian Plant Protection Congress; 2012. p. 259.Search in Google Scholar

[426] Spadaro D, Gullino ML. State of the art and future prospects of the biological control of postharvest fruit diseases. Int J Food Microbiology. 2004;91(2):185–94.10.1016/S0168-1605(03)00380-5Search in Google Scholar

[427] Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiology. 2007;53(11):1195–202.10.1139/W07-082Search in Google Scholar PubMed

[428] Tabarrraie M, Amini J, Harighi B, Shahriari D. Biological control of damping-off disease of cantaloupe with fluorescent pseudomonades bacteria in greenhouse conditions. 19th Iranian Plant Protection Congress; 2010. p. 812.Search in Google Scholar

[429] Tabe Bordbar E, Etebarian HR, Sahebany N, Rohani H. Control of blue mold of apple fruit by Trichoderma virens (T8) and inoculation of defence responses at 20°C. 18th Iranian Plant Protection Congress; 2008a. p. 251.Search in Google Scholar

[430] Tabe-Bordbar F, Etebarian HR, Sahebany N, Rohani H. Biological control of apple blue mold Penicillium solitum by Trichoderma isolates.18th Iranian Plant Protection Congress; 2008b. p. 324.Search in Google Scholar

[431] Taghinasab M, Rouhani H, Khodakaramian Gh, Karimi E. Evaluation of antagonistic activity of Trichoderma spp., Pseudomonas fluorescens and Bacillus subtilis on Pythium ultimum the causal agent of cucumber dampin-off. 16th Iranian Plant Protection Congress; 2004. p. 258.Search in Google Scholar

[432] Taheri H, Minassian V, Farrokhinegad R. Investigation on the possibility of biological and chemical control of citrus branch wilt decline and death disease. 14th Iranian Plant Protection Congress; 2000. p. 325.Search in Google Scholar

[433] Tajalipour S, Hassanzadeh N, Khabbaz Jolfaee H, Heydari A, Ghasemi A. Biological control of mushroom brown blotch disease using antagonistic bacteria. Biocontrol Sci Technol. 2014;24(4):473–84.10.1080/09583157.2013.873113Search in Google Scholar

[434] Tajalipour Sh, Hassanzadeh N, Heydari A, Khabbaz Jolfaee H. Biological control of brown blotch disease of white button mushroom (Agaricus bisporus) by some antagonistic bacteria. 20th Iranian Plant Protection Congress; 2012. p. 300.Search in Google Scholar

[435] Talibi I, Boubaker H, Boudyach EH, Ait Ben Aoumar A. Alternative methods for the control of postharvest citrus diseases. J Appl Microbiology. 2014;117(1):1–17.10.1111/jam.12495Search in Google Scholar PubMed

[436] Tanha S, Bayat F, Jamali F, Saeidi Zadeh AA. Evaluation of Pseudomonas fluorescens strains for biological control of root-knot nematode in some tomato cultivars. J Biocontrol Plant Prot. 2016;3(2):27–39.Search in Google Scholar

[437] Tashi‐Oshnoei F, Harighi B, Abdollahzadeh J. Isolation and identification of endophytic bacteria with plant growth promoting and biocontrol potential from oak trees. For Pathol. 2017;47(5):12360.10.1111/efp.12360Search in Google Scholar

[438] Toghueoa RMK, Ekea P, Gonzálezb IZ, de Aldanab BRV, Nanaa LW, Boyoma FF. Biocontrol and growth enhancement potential of two endophytic Trichoderma spp. from Terminalia catappa against the causative agent of Common Bean Root Rot (Fusarium solani). Biol Control. 2016;96:8–20.10.1016/j.biocontrol.2016.01.008Search in Google Scholar

[439] Turatto MF, Dourado FDS, Zilli JE, Botelho GR. Environmental microbiology: control potential of Meloidogyne javanica and Ditylenchus spp. Using fluorescent Pseudomonas and Bacillus spp. Braz J Microbiology. 2017;49(1):54–8.10.1016/j.bjm.2017.03.015Search in Google Scholar PubMed PubMed Central

[440] Ulloa-Ogaz AL, Muñoz-Castellanos LN, Nevárez-Moorillón GV. Biocontrol of phytopathogens: antibiotic production as mechanism of control the battle against microbial pathogens: basic science technological advances and educational programs. Spain: Formatex research center; 2015. p. 305–9.Search in Google Scholar

[441] Vafaie A, Behboudi B, Jafarie A. Effect of Streptomyces isolates from tomato rhizosphere on Fusarium oxysporum f.sp. radicis lycopersici. 23th Iranian Plant Protection Congress; 2018. p. 874.Search in Google Scholar

[442] Vasebi Y, Alizadeh A, Safaie N. Pantoea agglomerans ENA1 as a biocontrol agent of Macrophomina phaseolina and growth enhancer of soybean. J Crop Prot. 2015;4(1):43–57.Search in Google Scholar

[443] Vasebi Y, Dehnad AR. Evaluation of antifungal potential of Streptomyces isolates based on molecular identification of chitinase-encoding gene. 20th Iranian Plant Protection Congress; 2012. p. 272.Search in Google Scholar

[444] Vasebi Y, Safaie N, Alizadeh A. Biological control of soybean charcoal root rot disease using bacterial and fungal antagonists in vitro and greenhouse condition. J Crop Prot. 2013;2(2):139–50.Search in Google Scholar

[445] Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL, Nigro M, Marra R, et al. Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycology J. 2014;8(Suppl-1):127–39.10.2174/1874437001408010127Search in Google Scholar

[446] Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012;10:828–40.10.1038/nrmicro2910Search in Google Scholar

[447] Vos CM, De Cremer K, Cammue BPA, De Coninck B. The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. Mol Plant Pathol. 2015;16:400–12.10.1111/mpp.12189Search in Google Scholar

[448] Wisniewski M, Biles C, Droby S, McLaughlin R, Wilson C, Chalutz E. Mode of action of the postharvest biocontrol yeast Pichia guilliermondii I characterization of attachment to Botrytis cinerea. Physiol Mol Plant Pathol. 1991;39(4):245–58.10.1016/0885-5765(91)90033-ESearch in Google Scholar

[449] Yahyavi Azad A, Seraji A, Ali Akbar HJ, Safaei Chaeikar S. The effect of several antagonistic fungi isolate on biological control of tea root lesion nematode (Pratylenchus loosi). Biol Control Pests Plant Dis. 2018;7(1):21–32.Search in Google Scholar

[450] Yahyavi Azad A, Seraji A, Hojjat Jalali AA, Jamali S. Isolation of antagonistic fungi from tea plantation and study of their impact on tea root lesion nematode Pratylenchus loosi in laboratory. Biocontrol Plant Prot. 2017;5(1):81–91.Search in Google Scholar

[451] Yousefi H, Sahebani N, Mirabolfathy M, Faravardeh L, Mahdavi V. The effect of Bacillus subtilis on cucumber root and stem rot caused by Fusarium oxysporum f.sp. radicis-cucumerinum. 19th Iranian Plant Protection Congress; 2010. p. 926.Search in Google Scholar

[452] Yousefi H, Hassanzadeh N, Behboudi K, Firouzjahi FB. Identification and determination of characteristics of endophytes from rice plants and their role in biocontrol of bacterial blight caused by Xanthomonas oryzae pv. oryzae. Hellenic Plant Prot J. 2018;11(1):19–33.10.2478/hppj-2018-0003Search in Google Scholar

[453] Zafari D, Koushki MM, Bazgir E. Biocontrol evaluation of wheat take-all disease by Trichoderma screened isolates. Afr J Biotechnol. 2008;7(20):3650–56.Search in Google Scholar

[454] Zafari D, Rouhani H, Okhovat M, Hejaroud GhA. Biological control of Phytophthora erythroseptica by Trichoderma spp. 11th Iranian Plant Protection Congress; 1994. p. 156.Search in Google Scholar

[455] Zahed MJ, Behbudi K. Assessment of Streptomyces isolates of tomato rhizosphere for biocontrol of Fusarium oxysporum f.sp. radicis-lycopersici. Biol Control Pests Plant Dis. 2017;6(2):173–85.Search in Google Scholar

[456] Zahed MJ, Behbudi K. Biological control of Sclerotinia sclerotiorum (Lib) De Bary cause the cucumber white stem rot by rhizospheric Actinobacteria. Biol Control Pests Plant Dis. 2018;7(1):33–45.Search in Google Scholar

[457] Zamani M, Sharifi TA, Ahmadzadeh M, Ali ZAAA, Farzaneh M. Biological Control of green mold of orange caused by Penicillium digitatum with bacterium Pantoea aglomerans. Iran J Agric Sci (J Agriculture). 2008a;39(2):345–52.Search in Google Scholar

[458] Zamani M, Tehrani AS, Ahmadzadeh M, Behboodi K, Hosseininaveh V. Biological control of Penicillium digitatum on oranges using Pseudomonas spp. either alone or in combination with hot sodium bicarbonate dipping. Aust Plant Pathol. 2008b;37(6):605–8.10.1071/AP08065Search in Google Scholar

[459] Zamani M, Sharifi-Tehrani A, Ahmadzadeh M, Alizadeh-Aliabadi A. Biological control of citrus green mold using integrated application of some isolates of Trichoderma sp., Pseudomonas fluorescens and Bacillus subtilis under cold storage. 18th Iranian Plant Protection Congress; 2008c. p. 296.Search in Google Scholar

[460] Zangoei E, Etebarian HR, Sahebani N. Biological control of apple gray mold by mixtures of Bacillus subtilis and yeast isolates. Afr J Food Sci. 2014;8(3):155–63.10.5897/AJFS2013.1043Search in Google Scholar

[461] Zanguei E, Etebarian HR, Sahebani N, Alizadeh A. Improving biocontrol of gray mold disease of apple using a mixture of yeast isolates. Iran J Plant Prot Sci. 2010;41(2):361–72.Search in Google Scholar

[462] Zebarjad A, Sharifi-Tehrani A, Hejaroud GHA, Mohammadi M. A study on the effect of several antagonistic bacteria on control of soybean damping-off disease caused by Phytophthora sojae. Iran J Agric Sci (J Agriculture). 2006;37(4):671–86.Search in Google Scholar

[463] Zendehdel N, Hasanzadeh N, Beiki Firouzjahi N, Naeimi S. Isolation of tomato endophytic bacteria and evaluation of their biocontrol potential against Verticillium dahliae. 23th Iranian Plant Protection Congress; 2018. p. 880.Search in Google Scholar

[464] Zeynadini-Riseh A, Mahdikhani-Moghadam E, Rouhani H, Moradi M, Saberi-Riseh R, Mohammadi A. Effect of some probiotic bacteria as biocontrol agents of Meloidogyne incognita and evaluation of biochemical changes of plant defense enzymes on two cultivars of Pistachio. J Agric Sci Technol. 2018;20(1):179–91.Search in Google Scholar

[465] Ziarati HM, Roustaee A, Sahebani N, Etebarian HR, Aminian H. Study of biological control of root-knot nematode Meloidogyne javanica (Trube) Chitwood in tomato by Trichoderma harzianum Rifai in greenhouse and quantitative changes of phenolic compounds in plant. Seed Plant Prod J. 2009;25(3):261–74.Search in Google Scholar

Received: 2019-10-27
Revised: 2020-04-19
Accepted: 2020-05-18
Published Online: 2020-08-03

© 2020 Mehrdad Alizadeh et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 1.3.2024 from https://www.degruyter.com/document/doi/10.1515/opag-2020-0031/html
Scroll to top button