Abstract
The island of Antiparos belongs to the Aegean volcanic arc. The obsidian outcrops here contain pieces of excellent tool-making quality, but of small size making the raw material less attractive. Geological samples collected at Soros beach, at Blaco and Mastichi, in the southern part of the island, were analysed using Optical Microscopy, XRF (whole rock) and SEM-EDS (glass and microliths-microphenocrysts). The results obtained demonstrate the potential for distinguishing the Antiparos obsidian from other major central-western Mediterranean sources in an absolutely non-destructive way, using an XRF spectrometer or alternatively with an SEM equipped with an ED spectrometer.
References
Acquafredda, P., Andriani, T., Lorenzoni, S., & Zanettin, E. (1999). Chemical characterization of obsidians from different Mediterranean sources by non-destructive SEM-EDS analytical method. Journal of Archaeological Science, 26, 315–325.10.1006/jasc.1998.0372Search in Google Scholar
Acquafredda, P. & Paglionico, A. (2004). SEM-EDS microanalyses of microphenocrysts of Mediterranean obsidians: a preliminary approach to source discrimination. European Journal of Mineralogy, 16, 419–429.10.1127/0935-1221/2004/0016-0419Search in Google Scholar
Acquafredda, P. & Muntoni, I.M. (2008). Obsidian from Pulo di Molfetta (Bari, Southern Italy): provenance from Lipari and first recognition of a Neolithic sample from Monte Arci (Sardinia). Journal of Archaeological Science, 35, 947–955.10.1016/j.jas.2007.06.017Search in Google Scholar
Acquafredda, P., Muntoni, I.M., & Pallara, M. (2013). SEM-EDS and XRF characterization of obsidian bladelets from Portonovo (AN) to identify raw material provenance. Origini, 35, 69–82.Search in Google Scholar
Acquafredda, P., Muntoni, I.M., & Pallara, M. (2018). Reassessment of WD-XRF method for obsidian provenance shareable databases. Quaternary International, 468, 169–178.10.1016/j.quaint.2017.08.020Search in Google Scholar
Bigazzi, G., Bonadonna, F.P., & Radi, G. (1982). Fission track dating of obsidian and prehistory. In Workshop Track Dating, Abstracts of the Fifth International Conference on Geochronology, Cosmochronology and Isotope Geology (pp. 1–4). Nikko National Park: Japan.Search in Google Scholar
Bikel, L. (2011). The Quaternary sediments of NW-Antiparos (Aegean): Lithostratigraphy and depositional environment. Master’s thesis (Masterarbeit), University of Vienna: Austria.Search in Google Scholar
Carter, T. & Contreras, D.A. (2012). The character and use of the Soros hill obsidian source, Antiparos (Greece). Comptes Rendus Palevol, 11, 595–602.10.1016/j.crpv.2012.06.005Search in Google Scholar
De Francesco, A.M., Bocci, M., & Crisci, G.M. (2011). Non-destructive applications of wavelength XRF in obsidian studies. In M.S. Shackley (Ed.), X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology (pp. 81–107). Heidelberg: Springer.Search in Google Scholar
Innocenti, F., Kolios, N., Manetti, P., Rita, F., & Villari, L. (1982). Acid and basic late neogene volcanism in central Aegean Sea: Its nature and geotectonic significance. Bulletin Volcanologique, 45(2), 87–97.10.1007/BF02600426Search in Google Scholar
Leoni, L., Menichini, M., & Saitta, M. (2004). Ricalibrazione di una metodologia in fluorescenza-X per l’analisi di minerali e rocce su campioni di polvere. Atti della Società Toscana di Scienze Naturali, Memorie, 109, 13–20.Search in Google Scholar
Leoni, L. & Saitta M. (1976a). X-ray fluorescence analysis of 29 trace elements in rock and mineral standards. Rendiconti della Società Italiana di Mineralogia e Petrologia, 32 (2), 497–510.Search in Google Scholar
Leoni, L. & Saitta, M. (1976b). Determination of yttrium and niobium on standard silicate rocks by X-ray fluorescence analyses. X-ray Spectrometry, 5, 29–30.10.1002/xrs.1300050107Search in Google Scholar
Liritzis, I., Stevenson, C.M., Novak, S.W., Abdelrehim, I., Perdikatsis, V., & Bonini, M. (2007). New prospects in obsidian hydration dating: an integrated approach. In Proceedings of the Hellenic Archaeometry Society, Athens (pp. 9–22). British Archaeological Reports (BAR) International Series.Search in Google Scholar
Milić, M. (2014). PXRF characterisation of obsidian from central Anatolia, the Aegean and central Europe. Journal of Archaeological Science, 41, 285–296.10.1016/j.jas.2013.08.002Search in Google Scholar
Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussman, J., Aoki, K., & Gottardi, G. (1989). Nomenclature of pyroxenes. Canadian Mineralogist, 27, 143–156.10.2465/minerj.14.198Search in Google Scholar
Nelson, D.E., D’auria, J.M., & Bennett, R.B. (1975). Characterization of Pacific Northwest coast obsidian by X-ray fluorescence analysis. Archaeometry, 17, 85–97.10.1111/j.1475-4754.1975.tb00117.xSearch in Google Scholar
Pe-Piper, G. & Piper, D.J.W. (2007). Neogene backarc volcanism of the Aegean: New insights into the relationship between magmatism and tectonics. Geological Society of America Special Papers, 418, 17–31.10.1130/2007.2418(02)Search in Google Scholar
Pouchou, J.L. & Pichoir, F. (1988). A simplified version of the “PAP” model for matrix corrections in EPMA. In D.E. Newbury (Ed.), Microbeam Analysis (pp. 315–318). San Francisco Press.Search in Google Scholar
Pouchou, J.L. & Pichoir, F. (1991). Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In K.F.J. Heinrich & D.E. Newbury (Eds.), Electron Probe Quantitation (pp. 31–75). Plenum Press: New York.Search in Google Scholar
Ruka, R., Galaty, M., Riebe, D., Tykot, R.H., Gjipali, I., & Kourtessi-Philippakis, G. (2019). pXRF analysis of obsidian artifacts from Albania: Crossroads or cul-de-sac? Journal of Archaeological Science: Reports, 24, 39–49.10.1016/j.jasrep.2018.12.014Search in Google Scholar
Tykot, R.H. (2017a). Obsidian studies in the prehistoric central Mediterranean: after 50 years, what have we learned and what still needs to be done? Open Archaeology, 3, 264–278.10.1515/opar-2017-0018Search in Google Scholar
Tykot, R.H. (2017b). A decade of portable (hand-held) X-ray fluorescence spectrometer analysis of obsidian in the Mediterranean: many advantages and few limitations. MRS Advances, 2 (33–34), 1769–1784.10.1557/adv.2017.148Search in Google Scholar
Tykot, R.H. (2018). Obsidian Artifacts: Origin of the Raw Material. In: Forenbaher, S., Special Place, Interesting Times: The Island of Palagruža and Transitional Periods in Adriatic Prehistory (pp. 84–87). Archaeopress.Search in Google Scholar
© 2019 Pasquale Acquafredda et al., published by De Gruyter
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.