Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access August 3, 2020

Evidencing Human Occupation of a Small Island Through Ancient Glass: The Case of Ustica (Palermo, Italy)

  • Franco Foresta Martin EMAIL logo , Donatella Barca and Ivona Posedi
From the journal Open Archaeology


The subject of this study consists of 17 ancient glass fragments from the island of Ustica (Palermo, Italy) obtained from local museums. All the 17 glass fragments are stratigraphically decontextualized, as they were collected by archaeological surface surveys. Each fragment was analyzed by Electron Micro Probe Analyzer coupled with an Energy Dispersive X-Ray System (EMPA-EDS) and by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) to obtain the composition of major, minor and trace elements. Surface analyses revealed the presence of corrosion layers in most of the glass fragments which was evident also in the chemical data. Nevertheless, reconstruction of the glassmaking processes and the approximate period of production was possible for almost all the glass fragments. Less than half of the examined fragments are attributable to recognizable typologies as unguentaria, beakers, bottles, and vases; all the other small fragments are typologically undetermined. Out of 17 fragments only one fragment is of HLLA composition possibly being produced in 17th–18th century AD, while all the others can be attributed to soda glass with different periods of production: natron glass from Roman and Early Medieval period, plant-ash glass from High or Late Medieval period with the exception of possible Byzantine glass from 6th century AD, and synthetic soda glasses typical of modern era. These data confirm the discontinuous habitation of the island from the Roman period as well as the import of glass objects to the island.


Abdalla, H. M., Helba, H. A., & Mohamed, F. H. (1998). Chemistry of columbite-tantalite minerals in rare metal granitoids, Eastern Desert, Egypt. Mineralogical Magazine, 62(6), 821–836. in Google Scholar

Adlington, L. W., Freestone, I. C., & Teed, N. (2015). Analysis of medieval stained glass by handheld pXRF. Poster presented at TECHNART 2015: Non-destructive and microanalytical techniques in art and cultural heritage, Catania, 27-30 April 2015.Search in Google Scholar

Adlington, L. W., & Freestone, I. C. (2017). Using handheld pXRF to study medieval stained glass: A methodology using trace elements. MRS Advances, 2(33-34), 1785–1800. in Google Scholar

Ailara, V. (2015). Beauty in Hystory. In Ailara, V., de Vita, S. Foresta Martin, F., & Nicoletti, T. (Eds.), L’Isola di Ustica. Il racconto della Bellezza attraverso le parole, le immagini e le note musicali. Palermo: Regione siciliana, Assessorato dei beni culturali e dell’identità siciliana.Search in Google Scholar

Angelini, I., Gratuze, B., & Artioli, G. (2019). Glass and other vitreous materials through history (Vol. 20). EMU Notes in Mineralogy. in Google Scholar

Arletti, R., Vezzalini, G., Biaggio Simona, S., & Maselli Scotti, F. (2008). Archaeometrical studies of Roman imperial age glass from Canton Ticino. Archaeometry, 50(4), 606–626. in Google Scholar

Auriemma, R. (2000). Le anfore del relitto di Grado e il loro contenuto. Mélanges de l’école française de Rome, 112(1), 27–51.10.3406/mefr.2000.2113Search in Google Scholar

Barbera, G., Barone, G., Crupi, V., Longo, F., Majolino, D., Mazzoleni, P., . . . Venuti, V. (2012). Study of Late Roman and Byzantine glass by the combined use of analytical techniques. Journal of Non-Crystalline Solids, 358(12-13), 1554–1561. in Google Scholar

Barca, D., De Francesco, A. M., Crisci, G. M., & Tozzi, C. (2008). Provenance of obsidian artifacts from site of Colle Cera, Italy, by LA-ICP-MS method. Periodico di Mineralogia, 77, 41–52.Search in Google Scholar

Barca, D., Abate, M., Crisci, G. M., & De Presbiteris, D. (2009). Post-Medieval glass from the castle of Cosenza, Italy: Chemical characterization by LA-ICP-MS and SEM-EDS. Periodico di Mineralogia, 78(2), 49–64. in Google Scholar

Barca, D., Basso, E., Bersani, D., Galli, G., Invernizzi, C., La Russa, M.F., . . . Ruffolo, S. A. (2016). Vitreous tesserae from the calidarium mosaics of the Villa dei Quintili, Rome. Chemical composition and production technology. Microchemical Journal, 124, 726–735. in Google Scholar

Barca, D., Fiorenza, E., D’Andrea, M., Le Pera, E., Musella, M., Sudano, F., & Taliano Grasso, A. (2019). Chemical and Petrographic Characterization of Stone and Glass Tesserae in the Nereid and Geometric Mosaics from the S. Aloe Quarter in Vibo Valentia–Calabria, Italy. Minerals, 9(12), 729. in Google Scholar

Basile, B., Carreras Rossel, T., Greco, C., & Spanò Giammellaro A. (2004). Glassway. Il vetro: fragilità attraverso il tempo. Soprintendenza ai Beni Culturali e Ambientali di Ragusa.Search in Google Scholar

Basso, E., Riccardi, M. P., Messiga, B., Mendera, M., Gimeno, D., Garcia-Valles, M., . . . Tarozzi, C. (2009). Composition of the base glass used to realize the stained glass windows by Duccio di Buoninsegna (Siena Cathedral, 1288-1289 AD): A geochemical approach. Materials Characterization, 60(12), 1545–1554. in Google Scholar

Brems, D., Degryse, P., Hasendoncks, F., Gimeno, D., Silvestri, A., Vassilieva, E., . . . Honings, J. (2012). Western Mediterranean sand deposits as a raw material for Roman glass production. Journal of Archaeological Science, 39(9), 2897–2907. in Google Scholar

Brill, R. H. (1962). A note on the scientist’s definition of glass. Journal of Glass Studies, 4, 127–138.Search in Google Scholar

Brill, R. H. (1999a). Chemical Analyses of Early Glasses (Vol. 1. The Catalogue). Corning, N.Y.: Corning Museum of Glass.Search in Google Scholar

Brill, R. H. (1999b). Chemical Analyses of Early Glasses (Vol. 2. The Tables). Corning, N.Y.: Corning Museum of Glass.Search in Google Scholar

Cagno, S., Mendera, M., Jeffries, T., & Janssens, K. (2010). Raw materials for medieval to post-medieval Tuscan glassmaking: New insight from LA-ICP-MS analyses. Journal of Archaeological Science, 37(12), 3030–3036. in Google Scholar

Carter, A. K. (2016). The Production and Exchange of Glass and Stone Beads in Southeast Asia from 500 BCE to the early second millennium CE: An assessment of the work of Peter Francis in light of recent research. Archaeological Research in Asia, 6, 16–29. in Google Scholar

Coutinho, I., Gratuze, B., Alves, L. C., Medici, T., & Vilarigues, M. (2017). Wine Bottles From Lisbon: Archaeometric Studies Of Two Archaeological Sites Dated From The 17th To The 19th Century. Archaeometry, 59(5), 852–873. in Google Scholar

Davison, S. (2003). Conservation and Restoration of Glass. Oxford: Butterworth-Heinemann.Search in Google Scholar

De Bardi, M., Wiesinger, R., & Schreiner, M. (2013). Leaching studies of potash-lime-silica glass with medieval composition by IRRAS. Journal of Non-Crystalline Solids, 360(1), 57–63. in Google Scholar

Degryse, P. (Ed.). (2014). Glass making in the Greco-Roman world: results of the ARCHGLASS project (Studies in Archaeological Sciences, Vol. 4). Leuven University Press. in Google Scholar

Degryse, P., Scott, R. B., & Brems, D. (2014). The archaeometry of ancient glassmaking: reconstructing ancient technology and the trade of raw materials. Perspective. Actualité en histoire de l’art, 2, 224–238. in Google Scholar

de Vita, S., Laurenzi, M. A., Orsi, G., & Voltaggio, M. (1998). Application of 40Ar/39Ar and 230Th dating methods to the chronostratigraphy of Quaternary basaltic volcanic areas: The Ustica island case history. Quaternary International, 47-48, 117–127. in Google Scholar

de Vita, S., & Foresta Martin, F. (2017). The palaeogeographic setting and the local environmental impact of the 130 ka Falconiera tuff-cone eruption (Ustica island, Italy). Annals of Geophysics, 60(2), S0224. in Google Scholar

Dungworth, D. (2017). A tale of two industries: The manufacture of bottle and window glass in England from the 17th to the 20th centuries. In: Coutinho, I., Palomar, T., Coentro, S., Machado, A., & Vilarigues, M. (Eds.), Proceedings of the 5th GLASSAC International Conference. 2017 FTC Nova (pp. 9–10). NOVA.FCT Editorial. Retrieved from in Google Scholar

Dungworth, D., Bower, H., Gilchrist, A., & Wilkes, R. (2010). The West Window Beverley Minster Beverley, East Yorkshire. Chemical Analysis of the Window Glass and Paint. Research Department Report Series, 25,1–24.Search in Google Scholar

Dussubieux, L., Gratuze, B., & Blet-Lemarquand, M. (2010). Mineral soda alumina glass: Occurence and meaning. Journal of Archaeological Science, 37(7), 1646–1655. in Google Scholar

Dussubieux, L., & Gratuze, B. (2013). Glass in South Asia. Modern Methods for Analysing Archaeological and Historical Glass, 1, 399-413.10.1002/9781118314234.ch19Search in Google Scholar

Farges, F., Etcheverry, M.-P., Scheidegger, A., & Grolimund, D. (2006). Speciation and weathering of copper in “copper red ruby” medieval flashed glasses from the Tours cathedral (XIII century). Applied Geochemistry, 21(10), 1715–1731. in Google Scholar

Foresta Martin F. (2014). Ustica prima dell’Uomo. Ustica: Centro Studi e Documentazione Isola di Ustica.Search in Google Scholar

Foresta Martin, F., Di Piazza, A., D’Oriano, C., Carapezza, M. L., Paonita, A., Rotolo, S. G., & Sagnotti, L. (2017). New insights into the provenance of the obsidian fragments of the island of Ustica (Palermo, Sicily). Archaeometry, 59(3), 435–454. in Google Scholar

Foresta Martin, F., & La Monica, M. (2019). The Black Gold that came from the sea. A review of obsidian studies at the island of Ustica, Italy. Annals of Geophysics, 62(1), 1–15. in Google Scholar

Freestone, I. C. (2001). Post-depositional changes in archaeological ceramics and glasses. In D. R. Brothwell & A. M. Pollard (Eds.), Handbook of archaeological sciences (pp. 615–625). Wiley.Search in Google Scholar

Freestone, I. (2004). The Provenance of Ancient Glass through Compositional Analysis. MRS Proceedings, 852, OO8.1. doi:10.1557/PROC-852-OO8.110.1557/PROC-852-OO8.1Search in Google Scholar

Freestone, I. C., Gorin-Rosen, Y., & Hughes, M. J. (2000). Primary glass from Israel and the production of glass in late antiquity and the early Islamic period. MOM Éditions, 33(1), 65–83.Search in Google Scholar

Freestone, I. C., Hughes, M. J., & Stapleton, C. P. (2008). The composition and production of Anglo-Saxon glass. In S. Marzintik (Ed.), Catalogue of Anglo-Saxon Glass in the British Museum (pp. 29–46). London: The British Museum.Search in Google Scholar

Freestone, I. C., Wolf, S., & Thirlwall, M. (2009). Isotopic composition of glass from the Levant and south-eastern Mediterranean Region. In Degryse, P., Henderson, J., & Hodgins, G. (Eds.), Isotopes in vitreous materials (Studies in archaeological sciences, Vol. 1, pp. 31–52). Leuven University Press.10.2307/j.ctt9qdx40.6Search in Google Scholar

Freestone, I., Degryse, P., Lankton, J., Gratuze, B., & Schneider, J. (2018). HIMT, glass composition and commodity branding in the primary glass industry. In Rosenow D., Phelps M., Meek A., & Freestone I. (Eds.), Things that Travelled: Mediterranean Glass in the First Millennium AD (pp. 159–190). London: UCL Press. in Google Scholar

Friedrich, K. T. & Degryse, P. (2019). Soil vs. glass: an integrated approach towards thecharacterization of soil as a burial environment forthe glassware of Cucagna Castle (Friuli, Italy). STAR: Science & Technology of Archaeological Research. in Google Scholar

Fryer, B. J., Jackson, S. E., & Longerich, H. P. (1995). The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM-ICP-MS) in the Earth sciences. Canadian Mineralogist, 33, 303–312.Search in Google Scholar

Gao, S., Liu, X., Yuan, H., Hattendorf, B., Gunther, D., Chen, L., & Hu, S. (2002). Determination of forty-two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma mass spectrometry. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 26(2), 181–196. in Google Scholar

Genga, A., Siciliano, M., Famà, L., Filippo, E., Siciliano, T., Mangone, A., . . . Laganara, C. (2008). Characterization of surface layers formed under natural environmental conditions on medieval glass from Siponto (Southern Italy). Materials Chemistry and Physics, 111(2–3), 480–485. in Google Scholar

Gratuze, B., & Barrandon, J. N. (1990). Islamic glass weights and stamps: Analysis using nuclear techniques. Archaeometry, 32(2), 155–162. in Google Scholar

Gratuze, B., & Janssens, K. (2004). Provenance analysis of glass artefacts. In K. H. Janssens & R. Grieken (Eds.), Wilson & Wilson’s Comprehensive Analytical Chemistry. Elsevier.Search in Google Scholar

Gratuze, B., Soulier, I., Barrandon, J.-N., & Foy, D. (1995). The origin of cobalt blue pigments in French glass from the thirteenth to the eighteenth centuries. In D. R. Hook & D. R. M. Gaimster (Eds.), Trade and Discovery: The Scientific Study of Artefacts from Post-Medieval Europe and Beyond (pp. 123–133). London: Bristish Museum Press.Search in Google Scholar

Gratuze, B., Soulier, I., Barrandon, J. N., & Roy, D. (1992). De l’origine du cobalt dans les verres. Revue d’Archeometrie, 16(1), 97–108. Retrieved from in Google Scholar

Gratuze, B. (2013). Provenance analysis of glass artefacts. In K. Janssens (Ed.), Modern methods for analysing archaeological and historical glass (pp. 311–343). Wiley & Sons, Ltd in Google Scholar

Gueriau, P., Jauvion, C., & Mocuta, C. (2018). Show me your yttrium, and I will tell you who you are: Implications for fossil imaging. Palaeontology, 61(6), 981–990. in Google Scholar

Gunther, D., & Heinrich, C. A. (1999). Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier. Journal of Analytical Atomic Spectrometry, 14(9), 1363–1368. in Google Scholar

Hellemans, K., Cagno, S., Bogana, L., Janssens, K., & Mendera, M. (2019). LA-ICP-MS labels early medieval Tuscan finds from Siena and Donoratico as late natron glass. Journal of Archaeological Science, Reports, 23, 844–853. in Google Scholar

Isings, C. (1957). Roman glass from dated finds (Vol. 2). JB Wolters.Search in Google Scholar

Janssens, K. (2013). Modern Methods for Analysing Archaeological and Historical Glass. John Wiley & Sons. in Google Scholar

Križanac, M. (2016). Early Byzantine Glass in the Territory of Serbia and Kosovo. Journal of Glass Studies, 58, 87–103.Search in Google Scholar

Lifshin, E. (2006). Electron Microprobe Analysis. In R. W. Cahn, P. Haasen, & E.J. Kramer (Eds.), Materials Science and Technology (pp. 352–521). Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. in Google Scholar

Mannino, G., & Ailara, V. (2016). Carta archeologica di Ustica. Ustica : Centro studi e documentazione isola di Ustica.Search in Google Scholar

Mirti, P., Casoli, A., & Appolonia, L. (1993). Scientific analysis of Roman glass from Augusta Praetoria. Archaeometry, 35(2), 225–240. in Google Scholar

Mirti, P., Lepora, A., & Sagui, L. (2000). Scientific analysis of seventh-century glass fragments from the Crypta Balbi in Rome. Archaeometry, 42(2), 359–374. in Google Scholar

Nenna, M. D. (Ed.). (2000). La route du verre: ateliers primaires et secondaires du second millénaire av. J.-C. au Moyen Age. Lyon, Maison de l’Orient et de la Méditerranée-Jean Pouilloux.Search in Google Scholar

Nenna, M. D. (2015). Primary glass workshops in Graeco-Roman Egypt. Glass of the Roman Empire. Oxford: Oxbow Books.Search in Google Scholar

Orlando, A., Olmi, F., Vaggelli, G., & Bacci, M. (1996). Mediaeval Stained Glasses of Pisa Cathedral (Italy): Their Composition and Alteration Products. Analyst, 121(4), 553–558. in Google Scholar

Ortega-Feliu, I., Gómez-Tubío, B., Respaldiza, M. A., & Capel, F. (2011). Red layered medieval stained glass window characterization by means of micro-PIXE technique. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 269(20), 2378–2382. in Google Scholar

Palomar, T. (2018). Chemical composition and alteration processes of glasses from the Cathedral of León (Spain). Boletín de la Sociedad Española de Cerámica y Vidrio, 57(3), 101–111. in Google Scholar

Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. T., Jackson, S. E., Neal, C. R., & Chenery, S. P. (1997). A compilation of new and published major and trace element data for NIST SRM 610 and SRM 612 glass reference materials. Geostandards Newsletter, 21(1), 115–144. in Google Scholar

Picon, M., & Vichy, M. (2003). D’Orient en Occident: l’origine du verre à l’époque romaine et durant le haut Moyen Âge. In Foy, D., & Marie-Dominique Nenna, M.-D. (Eds.), Échanges et commerce du verre dans le monde antique (Actes du colloque de l’AFAV, Aix-en-Provence et Marseille, 7-9 juin 2001) (pp. 17–31). Anvers.Search in Google Scholar

Pion, C., & Gratuze, B. (2016). Indo-Pacific glass beads from the Indian subcontinent in Early Merovingian graves (5th–6th century AD). Archaeological Research in Asia, (6) 51–64. in Google Scholar

Pliny the Elder. (1962). Natural history (Rackham, H., & Jones, W. H. S., Trans.). London : William Heinemann.Search in Google Scholar

Pollard, A. M., & Heron, C. (2008). Archaeological Chemistry. Cambridge: Royal Society of Chemistry.Search in Google Scholar

Posedi, I. (2016). Characterization of medieval glass artefacts from Miranduolo site, Chiusdino, Italy. Master’s thesis, Universidade de Évora.Search in Google Scholar

Posedi, I. (2020). Thirteenth-century Lincoln Cathedral stained-glasses: physico-chemical analyses of the Dean’s Eye rose window and south lancet window SG32. Unpublished PhD thesis. University of Lincoln.Search in Google Scholar

Posedi, I., Kertész, Z., Barrulas, P., Fronza, V., Schiavon, N., & Mirão, J. (2019). Medieval Tuscan glasses from Miranduolo, Italy: A multi-disciplinary study. Journal of Archaeological Science, Reports, 26, 101878. in Google Scholar

Posedi, I., Schiavon, N., Mirão, J., & Fronza, V. (2016). Archaeovitreological Study by VP-SEM-EDS of Glass Fragments (1250–1350 AD) from Miranduolo, Chiusdino, Italy. Paper presented at 50th Meeting of SPMicros – Microscopy and Microanalysis in Materials and Life Sciences, Porto, 29-30 June 2016.Search in Google Scholar

Poulain, D., Scuiller, C. & Gratuze, B. (2013). La parure en verre et en ambre de la nécropole mérovingienne de Saint-Laurent-des-Hommes (Dordogne). Bulletin de l’Association Française de l’Archéologie du Verre, 72–79.Search in Google Scholar

Rapp, G. (2009). Archaeomineralogy. Heidelberg: Springer-Verlag. in Google Scholar

Rehren, T., & Freestone, I. C. (2015). Ancient glass: From kaleidoscope to crystal ball. Journal of Archaeological Science, 56, 233–241. in Google Scholar

Sayre, E. V., & Smith, R. W. (1961). Compositional categories of ancient glass. Science, 133(3467), 1824–1826. in Google Scholar

Schalm, O., Janssens, K., Wouters, H., & Caluwé, D. (2007). Composition of 12–18th century window glass in Belgium: Non-figurative windows in secular buildings and stained-glass windows in religious buildings. Spectrochimica Acta. Part B, Atomic Spectroscopy, 62(6-7), 663–668. in Google Scholar

Schibille, N., & Freestone, I. C. (2013). Composition, production and procurement of glass at San Vincenzo Al Volturno: An early Medieval monastic complex in Southern Italy. PLoS One, 8(10), e76479. in Google Scholar

Scott Ercit, T. (1994). The geochemistry and crystal chemistry of columbite-group minerals from granitic pegmatites, southwestern Grenville province, Canadian shield. Canadian Mineralogist, 32, 421–438.Search in Google Scholar

Shackelford, J. F., & Doremus, R. H. (Eds.). (2008). Ceramic and Glass Materials: Structure, Properties and Processing. Boston: Springer in Google Scholar

Silvestri, A., Molin, G., & Salviulo, G. (2005). Archaeological glass alteration products in marine and land-based environments: Morphological, chemical and microtextural characterization. Journal of Non-Crystalline Solids, 351(16-17), 1338–1349. in Google Scholar

Sode, T., Gratuze, B., & Lankton, J. (2017). Red and orange high-alumina glass beads in 7th and 8th century Scandinavia: Evidence for long distance trade and local fabrication. In Wolf, S. & de Pury-Gysel, A. (Eds), Annales du 20e congrès de l’Association Internationale pour l’Histoire du Verre (pp. 326–333). Romont: AIHV - Association Internationale pour l’Histoire du VerreSearch in Google Scholar

Spatafora, F., & Mannino, G. (Ed.). (2008). Ustica, Brief Guide. Palermo: Beni Culturali e Ambientali.Search in Google Scholar

Swan, C. M., Rehren, T., Dussubieux, L., & Eger, A. A. (2018). High-boron and High-alumina Middle Byzantine (10th-12th Century ce) Glass Bracelets: A Western Anatolian Glass Industry : Middle Byzantine glass bracelets. Archaeometry, 60(2), 207–232. in Google Scholar

Then-Obłuska, J., & Dussubieux, L. (2016). Glass bead trade in the Early Roman and Mamluk Quseir ports—A view from the Oriental Institute Museum assemblage. Archaeological Research in Asia, 6, 81–103. in Google Scholar

Then-Obłuska, J., Wagner, B., & Kepa-Linowska, L. (2019). Dare to Gaze upon Her Face: An Interdisciplinary Analysis of Mosaic Face Beads from Meroe. Journal of Glass Studies, 61, 39.Search in Google Scholar

Tite, M., Shortland, A., & Paynter, S. (2002). The beginnings of vitreous materials in the Near East and Egypt. Accounts of Chemical Research, 35(8), 585–593. in Google Scholar

Toniolo, A. (2005). Musealizzazione del relitto di epoca imperiale romana Iulia Felix di grado (Italia) nel nuovo museo di archeologia subacquea di grado: il relitto e il suo carico. In De la excavación al público: procesos de decisión y creación de nuevos recursos (pp. 161-164). Zaragoza: Ayuntamiento de Zaragoza, Área de Cultura y Turismo, Servicio de CulturaSearch in Google Scholar

Trouth, P. (2017). Murano: removing arsenic brings benefits to health and the environment. ECHA Newsletter, Available from in Google Scholar

Tykot, R. H. (1995). Appendix I: obsidian provenance. In R.R. Holloway & S.S. Lukesh (Eds.), Ustica I. The Results of the Excavations of the Regione Siciliana Soprintendenza ai Beni Culturali ed Ambientali Provincia di Palermo in Collaboration with Brown University in 1990 and 1991 (pp. 87–90). Providence, R.I.: Center for Old World Archaeology and Art, Brown University.Search in Google Scholar

van Achterberg, E., Ryan, C. G., Jackson, S. E., & Griffin, W. L. (2001). Data reduction software for LA-ICPMS: appendix. In P. J. Sylvester (Ed.), Laser Ablation-ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications. Mineralogical Association of Canada (MAC) (Vol. 29, pp. 239–243). Short Course Series.Search in Google Scholar

Verità, M. & Zecchin, S. (2016). Raw materials and glassmaking technology in nineteenth-century Murano glassworks. In Barovier Mentasti, R., &Tonini, C. (Eds.), Study Days on Venetian Glass. The Birth of the Great Museum: the Glassworks Collections Between the Renaissance and the Revival. (pp. 45–56). Venezia: Istituto Veneto di Scienze, Lettere ed Arti.Search in Google Scholar

Wedepohl, K. H., Simon, K., & Kronz, A. (2011). Data on 61 chemical elements for the characterization of three major glass compositions in late antiquity and the middle ages. Archaeometry, 53(1), 81–102. in Google Scholar

Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217–1232. in Google Scholar

Wood, M., Panighello, S., Orsega, E. F., Robertshaw, P., van Elteren, J. T., Crowther, A., . . . Boivin, N. (2017). Zanzibar and Indian Ocean trade in the first millennium CE: The glass bead evidence. Archaeological and Anthropological Sciences, 9(5), 879–901. in Google Scholar

Received: 2019-11-14
Accepted: 2020-05-11
Published Online: 2020-08-03

© 2020 Franco Foresta Martin et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 7.12.2023 from
Scroll to top button