Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access July 30, 2020

Petroarcheometric Analysis on Obsidian Artefacts Found Within Some Neolithic – Eneolithic Period Caves of Southern Italy

  • Pasquale Acquafredda EMAIL logo , Felice Larocca , Antonella Minelli , Mauro Pallara and Francesca Micheletti
From the journal Open Archaeology


In the last twenty years, obsidian artefacts have been found in important and often extensive karst cavities in Southern Italy: three located in Calabria (Grotta della Monaca, and Grotta del Tesauro, in Sant’Agata di Esaro, Cosenza; Grotta Pietra Sant’Angelo in San Lorenzo Bellizzi, Cosenza), one in Puglia (Grotta di Santa Barbara in Polignano a Mare, Bari) and another in Campania (Grotta di Polla, Salerno). All these sites, that have returned a total of 151 obsidian tools, were connected to human frequentation of the underground environments that occurred during the Holocene, which can be precisely located in the vast period between the Neolithic and the Eneolithic (6th–4th millennium BC). They are mainly blades and bladelets, but also burins together with scrapers and cores, generally of small dimensions. SEM-EDS and WD-XRF absolutely non-destructive analyses carried out on these items have shown that all samples have a source area in the obsidian outcrops of the island of Lipari (Messina, Italy). These data confirm that the Aeolian island of Lipari furnished the privileged obsidian extraction outcrops for most of the Neolithic and Eneolithic archaeological sites of Southern Italy.


Acquafredda, P. (2019). XRF technique. Physical Sciences Reviews, 4(8), 1–20. in Google Scholar

Acquafredda, P., Larocca F., Muntoni, I. M., & Pallara, M. (2016). SEM and XRF analyses as a tool to discriminate obsidian provenance from archaeological sites of Central and Southern Italy. Paper presented at International Obsidian Conference (June 1-3 2016), Lipari (Italy).Search in Google Scholar

Acquafredda, P., Andriani, T., Lorenzoni, S., & Zanettin, E. (1999). Chemical Characterization of Obsidians from Different Mediterranean Sources by Non-destructive SEM-EDS Analytical Method. Journal of Archaeological Science, 26(3), 315–325. in Google Scholar

Acquafredda, P., & Paglionico, A. (2004). SEM-EDS microanalyses of microphenocrysts of Mediterranean obsidians: a preliminary approach to source discrimination. European Journal of Mineralogy, 16(3), 419–429. in Google Scholar

Acquafredda, P., & Muntoni, I. M. (2008). Obsidian from Pulo di Molfetta (Bari, Southern Italy): provenance from Lipari and first recognition of a Neolithic sample from Monte Arci (Sardinia). Journal of Archaeological Science, 35(4), 947–955. in Google Scholar

Acquafredda P., Mitolo D., & Muntoni I. M. (2011). Provenienza di ossidiana di Selva dei Muli (Frosinone), Origini, XXXIII, 233–236.Search in Google Scholar

Acquafredda P., Muntoni I. M., & Pallara M. (2013). SEM-EDS and XRF characterization of obsidian bladelets from Portonovo (AN) to identify raw material provenance, Origini, XXXV, 69–82.Search in Google Scholar

Acquafredda, P., & Larocca, F. (2017). Caratterizzazione archeologica e petrografica di manufatti neolitici dalla Grotta di Santa Barbara (Polignano a Mare - Bari). In F. Radina (Ed.), Preistoria e Protostoria della Puglia, Studi di Preistoria e Protostoria (Vol. 4, pp. 780–783). Firenze, Italy: Istituto Italiano di Preistoria e Protostoria.Search in Google Scholar

Acquafredda, P., Muntoni, I. M., & Pallara, M. (2017). La provenienza dell’ossidiana nel Neolitico della Puglia. In F. Radina (Ed.), Preistoria e Protostoria della Puglia, Studi di Preistoria e Protostoria (Vol. 4, pp. 809–814). Firenze, Italy: Istituto Italiano di Preistoria e Protostoria.Search in Google Scholar

Acquafredda, P., Muntoni, I. M., & Pallara, M. (2018). Reassessment of WD-XRF method for obsidian provenance shareable databases. Quaternary International, 468, 169–178. in Google Scholar

Bellot-Gurlet, L., Le Bourdonnec, F., Popeau, G., & Dubernet, S. (2004). Raman microspectroscopy of Western Mediterranean obsidian glass: one step towards provenance study? Journal of Raman Spectroscopy, 35(89), 671–677. in Google Scholar

Bigazzi, G., Bonadonna, F. P., Belluomini, G., & Malpieri, L. (1971). Studi sulle ossidiane italiane. IV. Datazione con il metodo delle tracce di fissione. Bollettino della Società Geologica Italiana, 90, 469–480.Search in Google Scholar

Cann, J. R., & Renfrew, C. (1964). The characterisation of obsidian and its application to the Mediterranean region. Proceedings of the Prehistoric Society, 30, 111–133. in Google Scholar

Carter, T., & Kilikoglou, V. (2007). From Reactor to Royalty? Aegean and Anatolian Obsidians from Quartier Mu, Malia (Crete). Journal of Mediterranean Archaeology, 20(1), 115–143. in Google Scholar

De Francesco, A. M., Crisci, G. M., & Bocci, M. (2008). Non-destructive analytic method using XRF for determination of provenance of archaeological obsidian artefacts from the Mediterranean area: A comparison with traditional XRF methods. Archaeometry, 50(2), 337–350. in Google Scholar

De Francesco, A. M., Bocci, M., & Crisci, G. M. (2011). Non-destructive applications of wavelength XRF in obsidian studies. In M. S. Shackley (Ed.), X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology (pp. 81–107). New York: Springer. in Google Scholar

Duttine, M., Villeneuve, G., Poupeau, G., Rossi, A. M., & Scorzelli, R. B. (2003). Electron spin resonance of Fe3+ ion in obsidians from Mediterranean islands. Application to provenance studies. Journal of Non-Crystalline Solids, 323(1-3), 193–199. in Google Scholar

Frahm, E., Doonan, R. C. P., & Kilikoglou, V. (2014). Handheld portable X-ray fluorescence of Aegean obsidians. Archaeometry, 56(2), 228–260. in Google Scholar

Freund, K. P. (2018). A long-term perspective on the exploitation of Lipari obsidian in central Mediterranean prehistory. Quaternary International, 468, 109–120. in Google Scholar

Freund, K. P., & Tykot, R. H. (2011). Lithic technology and obsidian exchange networks in Bronze Age Nuragic Sardinia (Italy). Archaeological and Anthropological Sciences, 3(2), 151–164. in Google Scholar

Gastaldi, P. (1974). Polla. In G. Bailo Modesti, B. d’Agostino, & P. Castaldi (Eds.), Seconda Mostra della Preistoria e della Protostoria nel Salernitano (pp. 51–66). Salerno: Ed. Laveglia.Search in Google Scholar

Gordus, A. A., Wright, G. A., & Griffin, J. B. (1968). Obsidian Sources Characterized by Neutron-Activation Analysis. Science, 161(3839), 382–384. PMID:1777674010.1126/science.161.3839.382Search in Google Scholar

Gratuze, B. (1999). Obsidian characterization by laser ablation ICP-MS and its application to prehistoric trade in the Mediterranean and the near east: Sources and distribution of obsidian within the Aegean and Anatolia. Journal of Archaeological Science, 26(8), 869–881. in Google Scholar

Larocca F. (2010). Grotta della Monaca: A prehistoric copper and iron mine in the Calabria region (Italy). In Anreiter P. et al. (Eds.), Mining in european history and its impact on environment and human societies : proceedings for the 1st Mining in European History-Conference of the SFB-HIMAT, 12.-15. November 2009, Innsbruck (pp. 267–270). Innsbruck: University Press.Search in Google Scholar

Larocca, F. (2012). Grotta della Monaca (Calabria, Italia meridionale). Una miniera neolitica per l’estrazione dell’ocra. Rubricatum. Revista del Museu de Gavà, 5, 249–256.Search in Google Scholar

Larocca, F. (2017). La Grotta di Santa Barbara a Polignano a Mare (Bari). Evidenze funerarie e cultuali di età neolitica. In F. Radina (Ed.), Preistoria e Protostoria della Puglia, Studi di Preistoria e Protostoria (Vol. 4, pp. 773–777). Firenze, Italy: Istituto Italiano di Preistoria e Protostoria.Search in Google Scholar

Larocca, F., & Breglia, F. (2014). L’alta valle dell’Esaro e le sue miniere preistoriche. Speleologia, 71, 30–36.Search in Google Scholar

Larocca, F., Minelli, A., & Larocca, A. (2019). Dentro la Pietra Sant’Angelo. Viaggio alla scoperta della preistoria nelle grotte di San Lorenzo Bellizzi. Speleologia, 80, 24–31.Search in Google Scholar

Merrick, H. V., & Brown, F. H. (1984). Rapid chemical characterization of obsidian artefacts by electron microprobe analysis. Archaeometry, 26(2), 230–236. in Google Scholar

Minelli, A., & Larocca, F. (2019). Ricerche speleo-archeologiche nella Grotta di Polla (Salerno). Speleologia, 80, 18–19.Search in Google Scholar

Nelson, D. E., D’Auria, J. M., & Bennett, R. B. (1975). Characterization of Pacific Northwest coast obsidian by X-ray fluorescence analysis. Archaeometry, 17(1), 85–97. in Google Scholar

Nielson, K. K., Hill, N. W., Mangelson, N. F., & Nelson, F. W. (1976). Elemental analysis of obsidian artefacts by proton particle induced X-ray emission. Analytical Chemistry, 48(13), 1947–1953. in Google Scholar

Phillips, S. C., & Speakman, R. J. (2009). Initial source evaluation of archaeological obsidian from the Kuril Islands of the Russian Far East using portable XRF. Journal of Archaeological Science, 36(6), 1256–1263. in Google Scholar

Pouchou, J. L., & Pichoir, F. (1988). A simplified version of the “PAP” model for matrix corrections in EPMA. In Newbury D. E. (Ed.), Microbeam Analysis (pp. 315–318). San Francisco: San Francisco Press.Search in Google Scholar

Pouchou, J. L., & Pichoir, F. (1991). Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In K. F. J. Heinrich & D. E. Newbury (Eds.), Electron Probe Quantitation (pp. 31–75). New York: Plenum Press. in Google Scholar

Shackley, M. S. (1998). Gamma rays, X-rays, and stone tools: Some current advances in archaeological geochemistry. Journal of Archaeological Science, 25(3), 259–270. in Google Scholar

Stewart, S. J., Cernicchiaro, G., Scorzelli, R. B., Poupeau, G., Acquafredda, P., & De Francesco, A. M. (2003). Magnetic properties and 57 Fe Mossbauer spectroscopy of Mediterranean prehistoric obsidians for provenance studies. Journal of Non-Crystalline Solids, 323(1-3), 188–192. in Google Scholar

Syvilay, D., Bousquet, B., Chapoulie, R., Orange, M., & Le Bourdonnec, F.-X. (2019). Advanced statistical analysis of LIBS spectra for the sourcing of obsidian samples. Journal of Analytical Atomic Spectrometry, 34(5), 867–873. in Google Scholar

Tykot, R. H., & Young, S.M. M. (1996). Archaeological applications of inductively coupled plasma-mass spectrometry. In Orna, M. V. (Ed.), Archaeological Chemistry (pp. 116–130), ACS Symposium Series 625. Washington, D.C.: American Chemical Society Library. in Google Scholar

Tykot, R. H. (2017). Obsidian studies in the Prehistoric Central Mediterranean: After 50 years, what have we learned and what still needs to be done? Open Archaeology, 3(1), 264–278. in Google Scholar

Wainwright, G. A. (1927). Obsidian. In Flinders Petries W. M. (Ed.) Ancient Egypt (pp. 77–93). British School of Archaeology in Egypt. London (UK): Macmillan Ltd.Search in Google Scholar

Received: 2020-01-16
Accepted: 2020-05-15
Published Online: 2020-07-30

© 2020 Pasquale Acquafredda et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 25.2.2024 from
Scroll to top button