Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access October 30, 2018

Transformations in Breakthrough Research: The Emergence of Mirnas as a Research Routine in Molecular Biology

  • Paweł Kawalec EMAIL logo
From the journal Open Information Science

Abstract

Of the three main areas of science studies that emerged after WWII (Kawalec, 2018), namely social studies of science, economics of knowledge and scientometrics, it was the latter that gained particular prominence in science policy around the 1990’s with the advent of New Public Management (Pollitt, Thiel, & Homburg, 2007). One of its focal areas has been identification of emerging topics in science. They are incessantly assumed to be an outcome of a simple cumulative progress of scientific knowledge (Price, 1976; Merton, 1988; Bird, 2007; Fochler, 2016). In my paper I challenge this assumption of simple cumulativity and argue that the emergence of breakthrough topics in science is preceded by a sequence of transformation phases. Using the example of “microRNA&cancer” as an emergent topic identified by a quantitative analysis of a large dataset of publications (Small et al. 2014) I demonstrate that the proposed analysis of transformation phases complements big data quantitative analyses with theoretical understanding of the dynamics mechanism and, in effect, leads to a more adequate characterization of the topic itself as well as a more precise identification of the source publications. While the proposed method uses a more complex (meso-level) unit of analysis (i.e. “research routines”) instead of citations and co-occurrence of single publications (micro-level), it integrates quantitative with qualitative analyses.

References

Ambros, V. (1989). A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell, 57(1), 49-57. https://doi.org/10.1016/0092-8674(89)90171-210.1016/0092-8674(89)90171-2Search in Google Scholar

Ambros, V. (2001). microRNAs: tiny regulators with great potential. Cell, 107(7), 823-826. https://doi.org/10.1016/ S0092-8674(01)00616-X10.1016/S0092-8674(01)00616-XSearch in Google Scholar

Ambros, V. (2003). MicroRNA Pathways in Flies and Worms. Cell, 113(6), 673-676. https://doi.org/10.1016/ S0092-8674(03)00428-810.1016/S0092-8674(03)00428-8Search in Google Scholar

Ambros, V. (2004). The functions of animal microRNAs. Nature, 431(7006), 350.10.1038/nature02871Search in Google Scholar

Ambros, V. (2008). Foreword. In K. Appasani (Ed.), MicroRNAs: from basic science to disease biology (pp. xxvii-xxviii). Cambridge; New York: Cambridge University Press.Search in Google Scholar

Ambros, V., & Horvitz, H. (1984). Heterochronic mutants of the nematode Caenorhabditis elegans. Science, 226, 409-416.10.1126/science.6494891Search in Google Scholar

Ambros, V., & Horvitz, H. R. (1987). The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific postembryonic developmental events. Genes & Development, 1(4), 398-414. https://doi.org/10.1101/gad.1.4.39810.1101/gad.1.4.398Search in Google Scholar

Andersson, M., Johansson, B., Karlsson, C., & Loof, H. (Eds.). (2012). Innovation and growth: from R&D strategies of innovating firms to economy-wide technological change (1st ed). Oxford: Oxford University Press.10.1093/acprof:oso/9780199646685.001.0001Search in Google Scholar

Ankeny, R. A., & Leonelli, S. (2016). Repertoires: A post-Kuhnian perspective on scientific change and collaborative research. Studies in History and Philosophy of Science Part A, 60, 18-28. https://doi.org/10.1016/j.shpsa.2016.08.00310.1016/j.shpsa.2016.08.003Search in Google Scholar

Arbesman, S. (2011). Quantifying the ease of scientific discovery. Scientometrics, 86(2), 245-250. https://doi.org/10.1007/ s11192-010-0232-610.1007/s11192-010-0232-6Search in Google Scholar

Avise, J. C. (2014). Conceptual breakthroughs in evolutionary genetics: a brief history of shifting paradigms. Amsterdam: Elsevier, Academic Press.Search in Google Scholar

Bacharach, M. (2006). Beyond individual choice: teams and frames in game theory. (N. Gold & R. Sugden, Eds.). Princeton, N.J: Princeton University Press.10.1515/9780691186313Search in Google Scholar

Bartel, D. P. (2004). MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116(2), 281-297. https://doi.org/10.1016/S0092-8674(04)00045-510.1016/S0092-8674(04)00045-5Search in Google Scholar

Bartel, D. P. (2009). MicroRNAs: Target Recognition and Regulatory Functions. Cell, 136(2), 215-233. https://doi.org/10.1016/j. cell.2009.01.00210.1016/j.cell.2009.01.002Search in Google Scholar

Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., … Bentwich, Z. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics, 37(7), 766-770. https://doi.org/10.1038/ng159010.1038/ng1590Search in Google Scholar

Bhan, A., Soleimani, M., & Mandal, S. S. (2017). Long Noncoding RNA and Cancer: A New Paradigm. Cancer Research, 77(15), 3965-3981. https://doi.org/10.1158/0008-5472.CAN-16-263410.1158/0008-5472.CAN-16-2634Search in Google Scholar

Bird, A. (2007). What Is Scientific Progress? Nous, 41(1), 64-89. https://doi.org/10.1111/j.1468-0068.2007.00638.x10.1111/j.1468-0068.2007.00638.xSearch in Google Scholar

Bohme, G., Daele, W. van den, & Krohn, W. (1976). Finalization in Science. Social Science Information, 15, 307-330.10.1177/053901847601500205Search in Google Scholar

Bohme, G., Daele, W., Hohlfeld, R., Krohn, W., & Schafer, W. (1983). Finalization in Science: The Social Orientation of Scientific Progress. (P. Burgess, Trans.). Dordrecht: D. Reidel.10.1007/978-94-009-7080-9Search in Google Scholar

Borner, K., Boyack, K. W., Milojević, S., & Morris, S. (2012). An Introduction to Modeling Science: Basic Model Types, Key Definitions, and a General Framework for the Comparison of Process Models. In A. Scharnhorst, K. Borner, & P. van den Besselaar (Eds.), Models of Science Dynamics (pp. 3-22). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23068-410.1007/978-3-642-23068-4Search in Google Scholar

Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., & Cohen, S. M. (2003). bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila. Cell, 113(1), 25-36. https://doi.org/10.1016/S0092-8674(03)00231-910.1016/S0092-8674(03)00231-9Search in Google Scholar

Brown, J. S., & Duguid, P. (2001). Knowledge and Organization: A Social-Practice Perspective. Organization Science, 12(2), 198-213. https://doi.org/10.1287/orsc.12.2.198.1011610.1287/orsc.12.2.198.10116Search in Google Scholar

Cacciatori, E. (2012). Resolving Conflict in Problem-Solving: Systems of Artefacts in the Development of New Routines: Systems of Artefacts in the Development of Routines. Journal of Management Studies, 49(8), 1559-1585. https://doi.org/10.1111/j.1467-6486.2012.01065.x10.1111/j.1467-6486.2012.01065.xSearch in Google Scholar

Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., … Croce, C. M. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, 99(24), 15524-15529. https://doi.org/10.1073/pnas.24260679910.1073/pnas.242606799Search in Google Scholar

Calin, George A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews. Cancer, 6(11), 857-866. https://doi.org/10.1038/nrc199710.1038/nrc1997Search in Google Scholar

Callebaut, W. (2012). Scientific perspectivism: A philosopher of science’s response to the challenge of big data biology. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 43(1), 69-80. https://doi.org/10.1016/j.shpsc.2011.10.00710.1016/j.shpsc.2011.10.007Search in Google Scholar

Campbell, D. T. (1960). Blind variation and selective retentions in creative thought as in other knowledge processes. Psychological Review, 67(6), 380-400. https://doi.org/10.1037/h004037310.1037/h0040373Search in Google Scholar

Campbell, Neil A., J. L., & Reece, J. B. (2005). Biology (7th ed.). Boston: Pearson.Search in Google Scholar

Caracelli, V. J., & Greene, J. C. (1997). Crafting mixed-method evaluation designs. New Directions for Evaluation, 1997(74), 19-32. https://doi.org/10.1002/ev.106910.1002/ev.1069Search in Google Scholar

Carlsson, B., Acs, Z. J., Audretsch, D. B., & Braunerhjelm, P. (2015). Knowledge creation, entrepreneurship, and economic growth: a historical review. In Z. Acs, Global Entrepreneurship, Institutions and Incentives (pp. 71-107). Edward Elgar Publishing. https://doi.org/10.4337/9781784718053.0001310.4337/9781784718053.00013Search in Google Scholar

Carroll, L. J., & Rothe, J. P. (2010). Levels of Reconstruction as Complementarity in Mixed Methods Research: A Social Theory-Based Conceptual Framework for Integrating Qualitative and Quantitative Research. International Journal of Environmental Research and Public Health, 7(9), 3478-3488. https://doi.org/10.3390/ijerph709347810.3390/ijerph7093478Search in Google Scholar

Chen, H. (1997). Applying mixed methods under the framework of theory-driven evaluations. New Directions for Evaluation, 1997(74), 61-72. https://doi.org/10.1002/ev.107210.1002/ev.1072Search in Google Scholar

Cohen, M. D. (2007). Reading Dewey: Reflections on the Study of Routine. Organization Studies, 28(5), 773-786. https://doi.org/10.1177/017084060607762010.1177/0170840606077620Search in Google Scholar

Collins, H. M., & Evans, R. (2002). The Third Wave of Science Studies: Studies of Expertise and Experience. Social Studies of Science, 32(2), 235-296. https://doi.org/10.1177/030631270203200200310.1177/0306312702032002003Search in Google Scholar

D’Adderio, L. (2008). The performativity of routines: Theorising the influence of artefacts and distributed agencies on routines dynamics. Research Policy, 37(5), 769-789. https://doi.org/10.1016/j.respol.2007.12.012 de Haas, F. A., Leunissen, M., Martijn, M., & Ebbesen, S. (2015). Interpreting Aristotle’s Posterior Analytics in Late Antiquity and Beyond. Aestimatio: Critical Reviews in the History of Science, 9, 355-366.Search in Google Scholar

De Langhe, R. (2017). Towards the discovery of scientific revolutions in scientometric data. Scientometrics, 110(1), 505-519. https://doi.org/10.1007/s11192-016-2108-x10.1007/s11192-016-2108-xSearch in Google Scholar

de Rie, D., Abugessaisa, I., Alam, T., Arner, E., Arner, P., Ashoor, H., … de Hoon, M. J. L. (2017). An integrated expression atlas of miRNAs and their promoters in human and mouse. Nature Biotechnology, 35(9), 872-878. https://doi.org/10.1038/nbt.394710.1038/nbt.3947Search in Google Scholar

Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., … Guigo, R. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Research, 22(9), 1775-1789.https://doi.org/10.1101/gr.132159.11110.1101/gr.132159.111Search in Google Scholar

Devlin, W. J., & Bokulich, A. (Eds.). (2015). Kuhn’s Structure of Scientific Revolutions - 50 Years On (Vol. 311). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-13383-610.1007/978-3-319-13383-6Search in Google Scholar

Edmonds, W. A., & Kennedy, T. D. (2017). An applied guide to research designs: quantitative, qualitative, and mixed methods (Second Edition). Los Angeles: SAGE.Search in Google Scholar

Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs - microRNAs with a role in cancer. Nature Reviews Cancer, 6(4), 259-269. https://doi.org/10.1038/nrc184010.1038/nrc1840Search in Google Scholar

Feldman, M. S. (2016). Routines as Process. In J. Howard-Grenville, C. Rerup, A. Langly, & H. Tsoukas (Eds.), Organizational Routines (pp. 23-46). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198759485.003.000210.1093/acprof:oso/9780198759485.003.0002Search in Google Scholar

Feldman, M. S., Pentland, B. T., D’Adderio, L., & Lazaric, N. (2016). Beyond Routines as Things: Introduction to the Special Issue on Routine Dynamics. Organization Science, 27(3), 505-513. https://doi.org/10.1287/orsc.2016.107010.1287/orsc.2016.1070Search in Google Scholar

Fochler, M. (2016). Variants of Epistemic Capitalism: Knowledge Production and the Accumulation of Worth in Commercial Biotechnology and the Academic Life Sciences. Science, Technology & Human Values, 41(5), 922-948. https://doi. org/10.1177/016224391665222410.1177/0162243916652224Search in Google Scholar

Foster, J. G., Rzhetsky, A., & Evans, J. A. (2015). Tradition and Innovation in Scientists’ Research Strategies. American Sociological Review, 80(5), 875-908. https://doi.org/10.1177/000312241560161810.1177/0003122415601618Search in Google Scholar

Friedman, R. C., Farh, K. K.-H., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92-105. https://doi.org/10.1101/gr.082701.10810.1101/gr.082701.108Search in Google Scholar

Gitschier, J. (2010). In the Tradition of Science: An Interview with Victor Ambros. PLOS Genetics, 6(3), 1-4. https://doi. org/10.1371/journal.pgen.100085310.1371/journal.pgen.1000853Search in Google Scholar

Gomułka, S. (1990). The Theory of Technological Change and Economic Growth. London: Routledge.Search in Google Scholar

Grimes, R. L. (2013). The craft of ritual studies. Oxford ; New York: Oxford University Press, USA.10.1093/acprof:oso/9780195301427.001.0001Search in Google Scholar

Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., … Chang, H. Y. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291), 1071-1076. https://doi.org/10.1038/nature0897510.1038/08975Search in Google Scholar

Guttman, M., Amit, I., Garber, M., French, C., Lin, M. F., Feldser, D., … Lander, E. S. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 458(7235), 223-227. https://doi.org/10.1038/nature0767210.1038/07672Search in Google Scholar

Harper, P. S. (2008). A short history of medical genetics. Oxford; New York: Oxford University Press.10.1093/med/9780195187502.001.0001Search in Google Scholar

Hesse-Biber, S. N., & Johnson, B. (Eds.). (2015). The Oxford handbook of multimethod and mixed methods research inquiry. Oxford ; New York: Oxford University Press.10.1093/oxfordhb/9780199933624.001.0001Search in Google Scholar

Howard-Grenville, J., Golden-Biddle, K., Irwin, J., & Mao, J. (2010). Liminality as Cultural Process for Cultural Change. Organization Science, 22(2), 522-539. https://doi.org/10.1287/orsc.1100.055410.1287/orsc.1100.0554Search in Google Scholar

Howard-Grenville, J., Rerup, C., Langley, A., & Tsoukas, H. (2016). Introduction: Advancing a Process Perspective on Routines by Zooming Out and Zooming In. In J. Howard-Grenville, C. Rerup, A. Langly, & H. Tsoukas (Eds.), Organizational Routines (pp. 1-19). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198759485.003.000110.1093/acprof:oso/9780198759485.003.0001Search in Google Scholar

Human Genome Sequencing Consortium, I. (2004). Finishing the euchromatic sequence of the human genome. Nature, 431(7011), 931-945. https://doi.org/10.1038/nature0300110.1038/03001Search in Google Scholar

Kawalec, P. (2014). Metody mieszane w kontekście procesu badawczego w naukoznawstwie. Zagadnienia Naukoznawstwa, 50(1(199)), 3-22.Search in Google Scholar

Kawalec, P. (2016). W kierunku dojrzałości metodologicznej badań naukoznawczych. Zagadnienia Naukoznawstwa, 52(1(207)), 33-44.Search in Google Scholar

Kawalec, P. (2017a). Towards an evolutionary model of science dynamics: generation and production of scientific knowledge. Zagadnienia Naukoznawstwa, 53(4(214)), 405-428.Search in Google Scholar

Kawalec, P. (2017b). Perspectival representation in DSGE models. Economics and Business Review, 3(3), 80-99. https://doi.org/10.18559/ebr.2017.3.510.18559/ebr.2017.3.5Search in Google Scholar

Kawalec, P. (2018). Philosophical Perspectives: The Science of Science - From Inception to Maturity. In F. Cain & B. Kleeberg (Eds.), A New Organon: Science Studies in Interwar Poland (pp. 521-535). Tubingen: Mohr Siebeck.Search in Google Scholar

Khalil, A. M., Guttman, M., Huarte, M., Garber, M., Raj, A., Rivea Morales, D., … Rinn, J. L. (2009). Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America, 106(28), 11667-11672. https://doi.org/10.1073/pnas.090471510610.1073/pnas.0904715106Search in Google Scholar

Kuhn, T. S. (1962). The Structure of Scientific Revolutions. In International Encyclopedia of Unified Science (1st ed., Vol. 2). Chicago: Chicago University Press.Search in Google Scholar

Kuhn, T. S. (1970). The Structure of Scientific Revolutions (2nd ed.). Chicago: Chicago University Press.Search in Google Scholar

Kung, J. T. Y., Colognori, D., & Lee, J. T. (2013). Long Noncoding RNAs: Past, Present, and Future. Genetics, 193(3), 651-669. https://doi.org/10.1534/genetics.112.14670410.1534/genetics.112.146704Search in Google Scholar

Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of Novel Genes Coding for Small Expressed RNAs. Science, 294(5543), 853-858. https://doi.org/10.1126/science.106492110.1126/.1064921Search in Google Scholar

Latour, B., & Woolgar, S. (1986). Laboratory life: the construction of scientific facts (2nd ed.). Princeton: Princeton University Press.Search in Google Scholar

Lau, N. C., Lee, L. P., Weinstein, E. G., & Bartel, D. P. (2001). An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans. Science, 294(5543), 858-862. https://doi.org/10.1126/science.106506210.1126/.1065062Search in Google Scholar

Laudel, G., & Glaser, J. (2014). Beyond breakthrough research: Epistemic properties of research and their consequences for research funding. Research Policy, 43(7), 1204-1216. https://doi.org/10.1016/j.respol.2014.02.00610.1016/j.respol.2014.02.006Search in Google Scholar

Lee, R. C., & Ambros, V. (2001). An Extensive Class of Small RNAs in Caenorhabditis elegans. Science, 294(5543), 862-864. https://doi.org/10.1126/science.106532910.1126/.1065329Search in Google Scholar

Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843-854. https://doi.org/10.1016/0092-8674(93)90529-Y10.1016/0092-8674(93)90529-YSearch in Google Scholar

Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15-20. https://doi.org/10.1016/j.cell.2004.12.03510.1016/j.cell.2004.12.035Search in Google Scholar

Leydesdorff, L. (2000). The triple helix: an evolutionary model of innovations. Research Policy, 29(2), 243-255. https://doi. org/10.1016/S0048-7333(99)00063-310.1016/S0048-7333(99)00063-3Search in Google Scholar

Li, M., Porter, A. L., & Suominen, A. (2017). Insights into relationships between disruptive technology/innovation and emerging technology: A bibliometric perspective. Technological Forecasting and Social Change. https://doi. org/10.1016/j.techfore.2017.09.03210.1016/j.techfore.2017.09.032Search in Google Scholar

Lieberman, E. S. (2005). Nested Analysis as a Mixed-Method Strategy for Comparative Research. American Political Science Review, 99(03), 435-452. https://doi.org/10.1017/S000305540505176210.1017/S0003055405051762Search in Google Scholar

Liu, Z. C., & Ambros, V. (1989). Heterochronic genes control the stage-specific initiation and expression of the dauer larva developmental program in Caenorhabditis elegans. Genes & Development, 3(12b), 2039-2049. https://doi.org/10.1101/gad.3.12b.203910.1101/gad.3.12b.2039Search in Google Scholar

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.126210.1006/meth.2001.1262Search in Google Scholar

Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., … Golub, T. R. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834-838. https://doi.org/10.1038/nature0370210.1038/03702Search in Google Scholar

Marcum, J. A. (2015). Thomas Kuhn’s revolutions: a historical and an evolutionary philosophy of science? London New Dehli New York Sydney: Bloomsbury.Search in Google Scholar

Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., & Gilad, Y. (2008). RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Research, 18(9), 1509-1517. https://doi.org/10.1101/gr.079558.10810.1101/gr.079558.108Search in Google Scholar

Mattick, J. S., & Rinn, J. L. (2015). Discovery and annotation of long noncoding RNAs. Nature Structural & Molecular Biology, 22(1), 5-7. https://doi.org/10.1038/nsmb.294210.1038/nsmb.2942Search in Google Scholar

Mercer, T. R., Dinger, M. E., & Mattick, J. S. (2009). Long non-coding RNAs: insights into functions. Nature Reviews. Genetics, 10(3), 155-159. https://doi.org/10.1038/nrg252110.1038/nrg2521Search in Google Scholar

Merton, R. K. (1988). The Matthew Effect in Science, II: Cumulative Advantage and the Symbolism of Intellectual Property. Isis, 79(4), 606-623.10.1086/354848Search in Google Scholar

Miettinen, R., Tuunainen, J., & Esko, T. (2015). Epistemological, Artefactual and Interactional-Institutional Foundations of Social Impact of Academic Research. Minerva, 53(3), 257-277. https://doi.org/10.1007/s11024-015-9278-110.1007/s11024-015-9278-1Search in Google Scholar

Miner, A. S., Ciuchta, M. P., & Gong, Y. (2008). Organizational routines and organizational learning. In M. C. Becker (Ed.), Handbook of organizational routines (pp. 152-186). Cheltenham, UK ; Northampton, MA: Edward Elgar.Search in Google Scholar

Nickles, T. (2016). Fast and Frugal Heuristics at Research Frontiers. In E. Ippoliti, F. Sterpetti, & T. Nickles (Eds.), Models and Inferences in Science (Vol. 25, pp. 31-54). Cham: Springer International Publishing.Search in Google Scholar

Nowotny, H., Scott, P., & Gibbons, M. (2001). Re-thinking science: knowledge and the public in an age of uncertainty. Cambridge, UK: Polity.Search in Google Scholar

Park, P. J. (2009). ChIP-seq: advantages and challenges of a maturing technology. Nature Reviews Genetics, 10(10), 669-680.https://doi.org/10.1038/nrg264110.1038/nrg2641Search in Google Scholar

Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B., … Ruvkun, E. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408(6808), 86-89. Pearson, A., White, H., Bath-Hextall, F., Salmond, S., Apostolo, J., & Kirkpatrick, P. (2015). A mixed-methods approach to systematic reviews: International Journal of Evidence-Based Healthcare, 13(3), 121-131. https://doi.org/10.1097/XEB.000000000000005210.1097/XEB.0000000000000052Search in Google Scholar

Pentland, B. T., & Jung, E. J. (2016). Evolutionary and Revolutionary Change in Path-Dependent Patterns of Action. In J. Howard-Grenville, C. Rerup, A. Langly, & H. Tsoukas (Eds.), Organizational Routines (pp. 96-113). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198759485.003.000510.1093/acprof:oso/9780198759485.003.0005Search in Google Scholar

Pitman, J. (2006). Combinatorial stochastic processes: Ecole d’ete de probabilités de Saint-Flour XXXII - 2002. (J. Picard, Ed.). Berlin ; New York: Springer-Verlag.Search in Google Scholar

Pollitt, C., Thiel, S. van, & Homburg, V. (2007). New public management in Europe: adaptation and alternatives. Basingstoke [England]; New York: Palgrave Macmillan.10.1057/9780230625365Search in Google Scholar

Price, D. J. de S. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27(5), 292-306. https://doi.org/10.1002/asi.463027050510.1002/asi.4630270505Search in Google Scholar

Psillos, S. (2014). The View from Within and the View from Above: Looking at van Fraassen’s Perrin. In W. J. Gonzalez (Ed.), Bas van Fraassen’s Approach to Representation and Models in Science (pp. 143-166). Dordrecht: Springer Netherlands. https://link.springer.com/10.1007/978-94-007-7838-2_710.1007/978-94-007-7838-2_7Search in Google Scholar

Ranzani, V., Arrigoni, A., Rossetti, G., Panzeri, I., Abrignani, S., Bonnal, R. J. P., & Pagani, M. (2017). Next-Generation Sequencing Analysis of Long Noncoding RNAs in CD4+ T Cell Differentiation. In E. Lugli (Ed.), T-Cell Differentiation (Vol. 1514, pp. 173-185). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4939-6548-9_1410.1007/978-1-4939-6548-9_14Search in Google Scholar

Reale, E., Avramov, D., Canhial, K., Donovan, C., Flecha, R., Holm, P., … Van Horik, R. (2017). A review of literature on evaluating the scientific, social and political impact of social sciences and humanities research. Research Evaluation. https://doi. org/10.1093/reseval/rvx02510.1093/reseval/rvx025Search in Google Scholar

Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J., Rougvie, A., … Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772), 901-906.Search in Google Scholar

Rinn, J. L., Kertesz, M., Wang, J. K., Squazzo, S. L., Xu, X., Brugmann, S. A., … Chang, H. Y. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7), 1311-1323. https://doi.org/10.1016/j.cell.2007.05.02210.1016/j.cell.2007.05.022Search in Google Scholar

Rotolo, D., Rafols, I., Hopkins, M. M., & Leydesdorff, L. (2017). Strategic intelligence on emerging technologies: Scientometric overlay mapping. Journal of the Association for Information Science and Technology, 68(1), 214-233. https://doi.org/10.1002/asi.2363110.1002/asi.23631Search in Google Scholar

Ruvkun, G., Ambros, V., Coulson, A., Waterston, R., Sulston, J., & Horvitz, H. R. (1989). Molecular genetics of the Caenorhabditis elegans heterochronic gene lin-14. Genetics, 121(3), 501-516.10.1093/genetics/121.3.501Search in Google Scholar

Salatino, A. A., Osborne, F., & Motta, E. (2017). How are topics born? Understanding the research dynamics preceding the emergence of new areas. PeerJ Computer Science, 3, e119. https://doi.org/10.7717/peerj-cs.11910.7717/peerj-cs.119Search in Google Scholar

Salmieri, G., Bronstein, D., Charles, D., & Lennox, J. G. (2014). Episteme, demonstration, and explanation: A fresh look at Aristotle’s Posterior Analytics. Metascience, 23(1), 1-35.10.1007/s11016-013-9815-1Search in Google Scholar

Schneider, J. W., & Costas, R. (2017). Identifying potential “breakthrough” publications using refined citation analyses: Three related explorative approaches. Journal of the Association for Information Science and Technology, 68(3), 709-723. https://doi.org/10.1002/asi.2369510.1002/asi.23695Search in Google Scholar

Simonton, D. K. (2011). Creativity and discovery as blind variation: Campbell’s (1960) BVSR model after the half-century mark. Review of General Psychology, 15(2), 158-174. https://doi.org/10.1037/a002291210.1037/a0022912Search in Google Scholar

Siqueiros-Garcia, J. M., Hernandez-Lemus, E., Garcia-Herrera, R., & Robina-Galatas, A. (2014). Mapping the Structure and Dynamics of Genomics-Related MeSH Terms Complex Networks. PLoS ONE, 9(4), e92639. https://doi.org/10.1371/journal.pone.009263910.1371/journal.pone.0092639Search in Google Scholar

Small, H., Boyack, K. W., & Klavans, R. (2014). Identifying emerging topics in science and technology. Research Policy, 43(8), 1450-1467. https://doi.org/10.1016/j.respol.2014.02.00510.1016/j.respol.2014.02.005Search in Google Scholar

Trice, H. M., & Beyer, J. M. (1984). Studying Organizational Cultures Through Rites and Ceremonials. Academy of Management Review, 9(4), 653-669. https://doi.org/10.5465/AMR.1984.427739110.5465/amr.1984.4277391Search in Google Scholar

Tripathi, R., Chakraborty, P., & Varadwaj, P. K. (2017). Unraveling long non-coding RNAs through analysis of high-throughput RNA-sequencing data. Non-Coding RNA Research, 2(2), 111-118. https://doi.org/10.1016/j.ncrna.2017.06.00310.1016/j.ncrna.2017.06.003Search in Google Scholar

Turner, S. F., & Fern, M. J. (2012). Examining the Stability and Variability of Routine Performances: The Effects of Experience and Context Change: Stability and Variability of Routine Performances. Journal of Management Studies, 49(8), 1407-1434. https://doi.org/10.1111/j.1467-6486.2012.01061.x10.1111/j.1467-6486.2012.01061.xSearch in Google Scholar

Turner, V. (1969). The Ritual Process: Structure and Anti-Structure. London: Routledge.Search in Google Scholar

van den Ende, L., & van Marrewijk, A. (2014). The ritualization of transitions in the project life cycle: A study of transition rituals in construction projects. International Journal of Project Management, 32(7), 1134-1145. https://doi.org/10.1016/j.ijproman.2014.02.00710.1016/j.ijproman.2014.02.007Search in Google Scholar

van Fraassen, B. C. (2009). The perils of Perrin, in the hands of philosophers. Philosophical Studies, 143(1), 5-24. https://doi. org/10.1007/s11098-008-9319-910.1007/s11098-008-9319-9Search in Google Scholar

van Fraassen, B. C. (2014). The Criterion of Empirical Grounding in the Sciences. In W. J. Gonzalez (Ed.), Bas van Fraassen’s Approach to Representation and Models in Science (pp. 79-100). Dordrecht: Springer Netherlands. Retrieved from http://link.springer.com/10.1007/978-94-007-7838-2_410.1007/978-94-007-7838-2_4Search in Google Scholar

van Gennep, A. (1960). The rites of passage. Chicago: Chicago University Press.Search in Google Scholar

Volinia, S., Calin, G. A., Liu, C.-G., Ambs, S., Cimmino, A., Petrocca, F., … Croce, C. M. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2257-2261. https://doi.org/10.1073/pnas.051056510310.1073/pnas.0510565103Search in Google Scholar

Westgate, M. J., Barton, P. S., Pierson, J. C., & Lindenmayer, D. B. (2015). Text analysis tools for identification of emerging topics and research gaps in conservation science: Text Analysis for Research Synthesis. Conservation Biology, 29(6), 1606-1614. https://doi.org/10.1111/cobi.1260510.1111/cobi.12605Search in Google Scholar

Wightman, B., Ha, I., & Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75(5), 855-862. https://doi.org/10.1016/0092-8674(93)90530-410.1016/0092-8674(93)90530-4Search in Google Scholar

Winnink, J. J., Tijssen, R. J. W., & van Raan, A. F. J. (2016). Theory-changing breakthroughs in science: The impact of research teamwork on scientific discoveries. Journal of the Association for Information Science and Technology, 67(5), 1210-1223. https://doi.org/10.1002/asi.2350510.1002/asi.23505Search in Google Scholar

Winter, S. G. (2013). Habit, Deliberation, and Action: Strengthening the Microfoundations of Routines and Capabilities. Academy of Management Perspectives, 27(2), 120-137. https://doi.org/10.5465/amp.2012.012410.5465/amp.2012.0124Search in Google Scholar

Zeng, A., Shen, Z., Zhou, J., Wu, J., Fan, Y., Wang, Y., & Stanley, H. E. (2017). The science of science: From the perspective of complex systems. Physics Reports. https://doi.org/10.1016/j.physrep.2017.10.00110.1016/j.physrep.2017.10.001Search in Google Scholar

Received: 2018-01-10
Accepted: 2018-08-20
Published Online: 2018-10-30
Published in Print: 2018-10-01

© by Paweł Kawalec, published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 31.3.2023 from https://www.degruyter.com/document/doi/10.1515/opis-2018-0010/html
Scroll to top button