Abstract
African American women are 39-44% more likely to die from breast cancer than white women. This stable racial disparity in mortality rates has persisted since the 1980s and is unlikely to improve unless specific factors leading to disparities are discovered. Racial health disparities should be understood in the context of stable racialized social structures that determine differential access to information. The purpose of this study is to consider how recent quantitative studies using HINTS data might benefit from a critical race agenda to capture the nuances of African American women’s information behaviors, genetic testing awareness, and testing for BRCA1 and BRCA2 gene mutations.
References
Abnousi, F., Rumsfeld, J. S., & Krumholz, H. M. (2018). Social Determinants of Health in the Digital Age: Determining the Source Code for Nurture. Journal of the American Medical Association. https://doi.org/10.1001/jama.2018.1976310.1001/jama.2018.19763Search in Google Scholar
Ademuyiwa, F. O., Salyer, P., Ma, Y., Fisher, S., Colditz, G., Weilbaecher, K., & Bierut, L. J. (2019). Assessing the effectiveness of the National Comprehensive Cancer Network genetic testing guidelines in identifying African American breast cancer patients with deleterious genetic mutations. Breast Cancer Research and Treatment, 178(1), 151–159. https://doi.org/10.1007/s10549-019-05359-w10.1007/s10549-019-05359-wSearch in Google Scholar
Agurs-Collins, T., Ferrer, R., Ottenbacher, A., Waters, E. A., O’Connell, M. E., & Hamilton, J. G. (2015). Public Awareness of Direct-to-Consumer Genetic Tests: Findings from the 2013 U.S. Health Information National Trends Survey. Journal of Cancer Education, 30(4), 799–807. https://doi.org/10.1007/s13187-014-0784-x10.1007/s13187-014-0784-xSearch in Google Scholar
Ailshire, J. A., & House, J. S. (2011). The Unequal Burden of Weight Gain: An Intersectional Approach to Understanding Social Disparities in BMI Trajectories from 1986 to 2001/2002. Social Forces, 90(2), 397–423. https://doi.org/10.1093/sf/sor00110.1093/sf/sor001Search in Google Scholar
Allen, C. G., McBride, C. M., Balcazar, H. G., & Kaphingst, K. A. (2016). Community Health Workers: An Untapped Resource to Promote Genomic Literacy. Journal of Health Communication, 21(sup2), 25–29. https://doi.org/10.1080/10810730.2016. 1196272Search in Google Scholar
Alvidrez, J., Castille, D., Laude-Sharp, M., Rosario, A., & Tabor, D. (2019). The National Institute on Minority Health and Health Disparities Research Framework. American Journal of Public Health, 109(S1), S16–S20. https://doi.org/10.2105/AJPH.2018.30488310.2105/AJPH.2018.304883Search in Google Scholar
Armstrong, J., Toscano, M., Kotchko, N., Friedman, S., Schwartz, M. D., Virgo, K. S., . . . Sutphen, R. (2015). Utilization and Outcomes of BRCA Genetic Testing and Counseling in a National Commercially Insured Population: The ABOUT Study. JAMA Oncology, 1(9), 1251–1260. https://doi.org/10.1001/jamaoncol.2015.304810.1001/jamaoncol.2015.3048Search in Google Scholar
Arora, N. K., Hesse, B. W., Rimer, B. K., Viswanath, K., Clayman, M. L., & Croyle, R. T. (2008). Frustrated and confused: The American public rates its cancer-related information-seeking experiences. Journal of General Internal Medicine, 23(3), 223–228. https://doi.org/10.1007/s11606-007-0406-y10.1007/s11606-007-0406-ySearch in Google Scholar
Bigby, J., & Holmes, M. D. (2005). Disparities across the breast cancer continuum. Cancer Causes & Control, 16(1), 35–44. https://doi.org/10.1007/s10552-004-1263-110.1007/s10552-004-1263-1Search in Google Scholar
Bliss, C. (2012). Race Decoded: The Genomic Fight for Social Justice (1st ed.). Stanford University Press.Search in Google Scholar
Bonilla-Silva, E. (1997). Rethinking Racism: Toward a Structural Interpretation. American Sociological Review, 62(3), 465–480. JSTOR. https://doi.org/10.2307/265731610.2307/2657316Search in Google Scholar
Bor, J., Cohen, G. H., & Galea, S. (2017). Population health in an era of rising income inequality: USA, 1980-2015. Lancet, 389(10077), 1475–1490. https://doi.org/10.1016/S0140-6736(17)30571-810.1016/S0140-6736(17)30571-8Search in Google Scholar
Botkin, J. R., Belmont, J. W., Berg, J. S., Berkman, B. E., Bombard, Y., Holm, I. A., Levy, H. P., Ormond, K. E., Saal, H. M., Spinner, N. B., Wilfond, B. S., & McInerney, J. D. (February 7). Points to Consider: Ethical, Legal, and Psychosocial Implications of Genetic Testing in Children and Adolescents. The American Journal of Human Genetics, 97(1), 6–21. https://doi.org/10.1016/j.ajhg.2015.05.02210.1016/j.ajhg.2015.05.022Search in Google Scholar
Brashers, D. E., Goldsmith, D. J., & Hsieh, E. (2002). Information Seeking and Avoiding in Health Contexts. Human Communication Research, 28(2), 258–271. https://doi.org/10.1111/j.1468-2958.2002.tb00807.x10.1111/j.1468-2958.2002.tb00807.xSearch in Google Scholar
Brock, A. (2015). Deeper data: A response to boyd and Crawford. Media Culture & Society, 37(7), 1084–1088. https://doi.org/10.1177/016344371559410510.1177/0163443715594105Search in Google Scholar
Brown, T. H. (2018). Racial Stratification, Immigration, and Health Inequality: A Life Course-Intersectional Approach. Social Forces, 96(4), 1507–1540. https://doi.org/10.1093/sf/soy01310.1093/sf/soy013Search in Google Scholar
Buchanan, A. H., Rahm, A. K., & Williams, J. L. (2016). Alternate Service Delivery Models in Cancer Genetic Counseling: A Mini-Review. Frontiers in Oncology, 6, 120. https://doi.org/10.3389/fonc.2016.0012010.3389/fonc.2016.00120Search in Google Scholar
Catz, D. S., Green, N. S., Tobin, J. N., Lloyd-Puryear, M. A., Kyler, P., Umemoto, A., . . . Wolman, F. (2005). Attitudes about genetics in underserved, culturally diverse populations. Public Health Genomics, 8(3), 161–172. https://doi.org/10.1159/00008675910.1159/000086759Search in Google Scholar
Caulfield, T., Fullerton, S. M., Ali-Khan, S. E., Arbour, L., Burchard, E. G., Cooper, R. S., . . . Daar, A. S. (2009). Race and ancestry in biomedical research: Exploring the challenges. Genome Medicine, 1(1), 8. https://doi.org/10.1186/gm810.1186/gm8Search in Google Scholar
Cheney-Lippold, J. (2017). We Are Data: Algorithms and the Making of Our Digital Selves. NYU Press. https://doi.org/10.2307/j.ctt1gk094110.2307/j.ctt1gk0941Search in Google Scholar
Cooper Owens, D. (2017). Medical Bondage: Race, Gender, and the Origins of American Gynecology (1st ed.). University of Georgia Press. https://doi.org/10.2307/j.ctt1pwt69x10.2307/j.ctt1pwt69xSearch in Google Scholar
Crawford, D. C., Cooke Bailey, J. N., & Briggs, F. B. S. (2019). Mind the gap: Resources required to receive, process and interpret research-returned whole genome data. Human Genetics, 138(7), 691–701. https://doi.org/10.1007/s00439-019-02033-510.1007/s00439-019-02033-5Search in Google Scholar
Crenshaw, K. (1991). Mapping the Margins: Intersectionality, Identity Politics, and Violence against Women of Color. Stanford Law Review, 43(6), 1241–1299. JSTOR. https://doi.org/10.2307/122903910.2307/1229039Search in Google Scholar
Daly, M., Hobijn, B., & Pedtke, J. H. (2017). Disappointing facts about the black-white wage gap. FRBSF Economic Letter, 26, 2017.Search in Google Scholar
Davison, B. J., Gleave, M. E., Goldenberg, S. L., Degner, L. F., Hoffart, D., & Berkowitz, J. (2002). Assessing information and decision preferences of men with prostate cancer and their partners. Cancer Nursing, 25(1), 42–49. https://doi.org/10.1097/00002820-200202000-0000910.1097/00002820-200202000-00009Search in Google Scholar
Dean, M., & Davidson, L. G. (2018). Previvors’ Uncertainty Management Strategies for Hereditary Breast and Ovarian Cancer. Health Communication, 33(2), 122–130. https://doi.org/10.1080/10410236.2016.125018710.1080/10410236.2016.1250187Search in Google Scholar
Dervin, B., Nilan, M., Krenz, D., & Wittet, S. (1982). When cancer strikes: How cancer patients make sense out of their health situations. Report to the Office of Cancer Communications, National Cancer Institute. Procurement Order.Search in Google Scholar
DeSantis, C. E., Ma, J., Goding Sauer, A., Newman, L. A., & Jemal, A. (2017). Breast cancer statistics, 2017, racial disparity in mortality by state. CA: a Cancer Journal for Clinicians, 67(6), 439–448. https://doi.org/10.3322/caac.2141210.3322/caac.21412Search in Google Scholar
Dietze, E. C., Sistrunk, C., Miranda-Carboni, G., O’Regan, R., & Seewaldt, V. L. (2015). Triple-negative breast cancer in African-American women: Disparities versus biology. Nature Reviews. Cancer, 15(4), 248–254. https://doi.org/10.1038/nrc389610.1038/nrc3896Search in Google Scholar
Doukas, D. J., Localio, A. R., & Li, Y. (2004). Attitudes and beliefs concerning prostate cancer genetic screening. Clinical Genetics, 66(5), 445–451. https://doi.org/10.1111/j.1399-0004.2004.00305.x10.1111/j.1399-0004.2004.00305.xSearch in Google Scholar
Dusenbery, M. (2018). Doing Harm: The Truth About How Bad Medicine and Lazy Science Leave Women Dismissed, Misdiagnosed, and Sick (1st ed.). HarperOne.Search in Google Scholar
Ersig, A. L., Werner-Lin, A., Hoskins, L., Young, J., Loud, J. T., Peters, J., & Greene, M. H. (2019). Legacies and Relationships: Diverse Social Networks and BRCA1/2 Risk Management Decisions and Actions. Journal of Family Nursing, 25(1), 28–53. https://doi.org/10.1177/107484071881584410.1177/1074840718815844Search in Google Scholar
Fagerlin, A., Zikmund-Fisher, B. J., & Ubel, P. A. (2011). Helping patients decide: Ten steps to better risk communication. Journal of the National Cancer Institute, 103(19), 1436–1443. https://doi.org/10.1093/jnci/djr31810.1093/jnci/djr318Search in Google Scholar
Febbraro, T., Robison, K., Wilbur, J. S., Laprise, J., Bregar, A., Lopes, V., . . . Stuckey, A. (2015). Adherence patterns to National Comprehensive Cancer Network (NCCN) guidelines for referral to cancer genetic professionals. Gynecologic Oncology, 138(1), 109–114. https://doi.org/10.1016/j.ygyno.2015.04.02910.1016/j.ygyno.2015.04.029Search in Google Scholar
Feldman, M. W., & Lewontin, R. C. (2008). Race, ancestry, and medicine. In Revisiting race in a genomic age (Vol. 89, p. 101).Search in Google Scholar
Ford, C. L., & Airhihenbuwa, C. O. (2010). Critical Race Theory, race equity, and public health: Toward antiracism praxis. American Journal of Public Health, 100(S1, Suppl 1), S30–S35. https://doi.org/10.2105/AJPH.2009.17105810.2105/AJPH.2009.171058Search in Google Scholar
Freeman, H. P. (2004). Poverty, culture, and social injustice: Determinants of cancer disparities. CA: a Cancer Journal for10.3322/canjclin.54.2.72Search in Google Scholar
Clinicians, 54(2), 72–77. https://doi.org/10.3322/canjclin.54.2.7210.3322/canjclin.54.2.72Search in Google Scholar
Gaddis, S. M. (2019). Understanding the “How” and “Why” Aspects of Racial-Ethnic Discrimination: A Multimethod Approach to Audit Studies. Sociology of Race and Ethnicity (Thousand Oaks, Calif.), 5(4), 443–455. https://doi.org/10.1177/233264921987018310.1177/2332649219870183Search in Google Scholar
Garcia, J. A. (2013). A Holistic Alternative to Current Survey Research Approaches to Race. Mapping “Race”: Critical Approaches to Health Disparities Research, 67–83.Search in Google Scholar
Garcia, N. M., López, N., & Vélez, V. N. (2018). QuantCrit: Rectifying quantitative methods through critical race theory. Race, Ethnicity and Education, 21(2), 149–157. https://doi.org/10.1080/13613324.2017.137767510.1080/13613324.2017.1377675Search in Google Scholar
Gillborn, D., Warmington, P., & Demack, S. (2018). QuantCrit: Education, Policy, “Big Data” and Principles for a Critical Race Theory of Statistics. Race, Ethnicity and Education, 21(2), 158–179. https://doi.org/10.1080/13613324.2017.137741710.1080/13613324.2017.1377417Search in Google Scholar
Goldsmith, L., Jackson, L., O’Connor, A., & Skirton, H. (2012). Direct-to-consumer genomic testing: Systematic review of the literature on user perspectives. European Journal of Human Genetics, 20(8), 811–816. https://doi.org/10.1038/ejhg.2012.1810.1038/ejhg.2012.18Search in Google Scholar
Grimmett, C., Pickett, K., Shepherd, J., Welch, K., Recio-Saucedo, A., Streit, E., . . . Foster, C. (2018). Systematic review of the empirical investigation of resources to support decision-making regarding BRCA1 and BRCA2 genetic testing in women with breast cancer. Patient Education and Counseling, 101(5), 779–788. https://doi.org/10.1016/j.pec.2017.11.01610.1016/j.pec.2017.11.016Search in Google Scholar
Hall, M. J., Forman, A. D., Montgomery, S. V., Rainey, K. L., & Daly, M. B. (2015). Understanding patient and provider perceptions and expectations of genomic medicine. Journal of Surgical Oncology, 111(1), 9–17. https://doi.org/10.1002/jso.2371210.1002/jso.23712Search in Google Scholar
Han, P. K. J. (2016). Uncertainty and Ambiguity in Health Decisions. In Handbook of Health Decision Science (pp. 133–144). New York, NY: Springer; https://doi.org/10.1007/978-1-4939-3486-7_1010.1007/978-1-4939-3486-7_10Search in Google Scholar
Hannah-Moffat, K. (2018). Algorithmic risk governance: Big data analytics, race and information activism in criminal justice debates. Theoretical Criminology, 1362480618763582. https://doi.org/10.1177/136248061876358210.1177/1362480618763582Search in Google Scholar
Hesse, B. W., Greenberg, A. J., Peterson, E. B., & Chou, W. S. (2017). The health information national trends survey (HINTS): A resource for consumer engagement and health communication research. Information Services & Use, 240(2), 330–346. https://doi.org/10.3233/ISU-17083010.3233/ISU-170830Search in Google Scholar
Hesse-Biber, S., Flynn, B., & Farrelly, K. (2018). The Pink Underside: The Commercialization of Medical Risk Assessment and Decision-Making Tools for Hereditary Breast Cancer Risk. Qualitative Health Research, 28(10), 1523–1538. https://doi.org/10.1177/104973231876739510.1177/1049732318767395Search in Google Scholar
Himes, D. O., Davis, S. H., Lassetter, J. H., Peterson, N. E., Clayton, M. F., Birmingham, W. C., & Kinney, A. Y. (2019). Does family communication matter? Exploring knowledge of breast cancer genetics in cancer families. Journal of Community Genetics, 10(4), 481–487. https://doi.org/10.1007/s12687-019-00413-y10.1007/s12687-019-00413-ySearch in Google Scholar
Hogarth, R. A. (2017). Medicalizing Blackness: Making Racial Difference in the Atlantic World, 1780-1840. The University of North Carolina Press.Search in Google Scholar
Huang, H., Apouey, B., & Andrews, J. (2014). Racial and Ethnic Disparities in Awareness of Cancer Genetic Testing Among Online Users: Internet Use, Health Knowledge, and Socio-Demographic Correlates. [edb.]. Journal of Consumer Health on the Internet, 18(1), 15–30. https://doi.org/10.1080/15398285.2014.86916510.1080/15398285.2014.869165Search in Google Scholar
Jackson, F. (1999). African-American responses to the Human Genome Project. Public Understanding of Science (Bristol, England), 8(3), 181–191. https://doi.org/10.1088/0963-6625/8/3/30310.1088/0963-6625/8/3/303Search in Google Scholar
Jagsi, R., Griffith, K. A., Kurian, A. W., Morrow, M., Hamilton, A. S., Graff, J. J., . . . Hawley, S. T. (2015). Concerns about cancer risk and experiences with genetic testing in a diverse population of patients with breast cancer. Journal of Clinical Oncology, 33(14), 1584–1591. https://doi.org/10.1200/JCO.2014.58.588510.1200/JCO.2014.58.5885Search in Google Scholar
Jolie, A. (2013, May 14). Opinion | My Medical Choice by Angelina Jolie. The New York Times. https://www.nytimes.com/2013/05/14/opinion/my-medical-choice.htmlSearch in Google Scholar
Jones, T., McCarthy, A. M., Kim, Y., & Armstrong, K. (2017). Predictors of BRCA1/2 genetic testing among Black women with breast cancer: A population-based study. Cancer Medicine, 6(7), 1787–1798. https://doi.org/10.1002/cam4.112010.1002/cam4.1120Search in Google Scholar
Kahn, J. (2008). Patenting Race in a Genomic Age. Genomics, Society, and Policy, 4(3), 46. https://doi.org/10.1186/1746-5354-4-3-4610.1186/1746-5354-4-3-46Search in Google Scholar
Kaphingst, K. A., Peterson, E., Zhao, J., Gaysynsky, A., Elrick, A., Hong, S. J., . . . Chou, W. S. (2019). Cancer communication research in the era of genomics and precision medicine: A scoping review. Genetics in Medicine, 21(8), 1691–1698. https://doi.org/10.1038/s41436-018-0402-010.1038/s41436-018-0402-0Search in Google Scholar
Kim, G., Sellbom, M., & Ford, K.-L. (2014). Race/ethnicity and measurement equivalence of the Everyday Discrimination Scale. Psychological Assessment, 26(3), 892–900. https://doi.org/10.1037/a003643110.1037/a0036431Search in Google Scholar
Kolor, K., Chen, Z., Grosse, S. D., Rodriguez, J. L., Green, R. F., Dotson, W. D., . . . Khoury, M. J. (2017). BRCA Genetic Testing and Receipt of Preventive Interventions Among Women Aged 18-64 Years with Employer-Sponsored Health Insurance in Nonmetropolitan and Metropolitan Areas - United States, 2009-2014. MMWR. Surveillance Summaries, 66(15), 1–11. https://doi.org/10.15585/mmwr.ss6615a110.15585/mmwr.ss6615a1Search in Google Scholar
Krakow, M., Ratcliff, C. L., Hesse, B. W., & Greenberg-Worisek, A. J. (2017). Assessing genetic literacy awareness and knowledge gaps in the US population: Results from the Health Information National Trends Survey. Public Health Genomics, 20(6), 343–348. https://doi.org/10.1159/00048911710.1159/000489117Search in Google Scholar
Kuchenbaecker, K. B., Hopper, J. L., Barnes, D. R., Phillips, K.-A., Mooij, T. M., Roos-Blom, M.-J., . . . Olsson, H., & the BRCA1 and BRCA2 Cohort Consortium. (2017). Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. Journal of the American Medical Association, 317(23), 2402–2416. https://doi.org/10.1001/jama.2017.711210.1001/jama.2017.7112Search in Google Scholar
Kushalnagar, P., Holcomb, J., & Sadler, G. R. (2019). Genetic testing and eHealth usage among Deaf women. Journal of Genetic Counseling, 28(5), 933–939. https://doi.org/10.1002/jgc4.113410.1002/jgc4.1134Search in Google Scholar
Lawal, T. A., Lewis, K. L., Johnston, J. J., Heidlebaugh, A. R., Ng, D., Gaston-Johansson, F. G., . . . Biesecker, L. G. (2018). Disclosure of cardiac variants of uncertain significance results in an exome cohort. Clinical Genetics, 93(5), 1022–1029. https://doi.org/10.1111/cge.1322010.1111/cge.13220Search in Google Scholar
Lea, D. H., Kaphingst, K. A., Bowen, D., Lipkus, I., & Hadley, D. W. (2011). Communicating genetic and genomic information: Health literacy and numeracy considerations. Public Health Genomics, 14(4-5), 279–289. https://doi.org/10.1159/00029419110.1159/000294191Search in Google Scholar
Lee, S. S., Koenig, B. A., & Richardson, S. S. (Eds.). (2008). Revisiting Race in a Genomic Age. Rutgers University Press.Search in Google Scholar
Levy, D. E., Byfield, S. D., Comstock, C. B., Garber, J. E., Syngal, S., Crown, W. H., & Shields, A. E. (2011). Underutilization of BRCA1/2 testing to guide breast cancer treatment: Black and Hispanic women particularly at risk. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 13(4), 349–355. https://doi.org/10.1097/GIM.0b013e3182091ba410.1097/GIM.0b013e3182091ba4Search in Google Scholar
Levy-Lahad, E., Lahad, A., & King, M.-C. (2014). Precision medicine meets public health: Population screening for BRCA1 and BRCA2. Journal of the National Cancer Institute, 107(1), 420. https://doi.org/10.1093/jnci/dju42010.1093/jnci/dju420Search in Google Scholar
Lorde, A. (2006). The Cancer Journals (Special Edition). Aunt Lute Books.Search in Google Scholar
Lukwago, S. N., Kreuter, M. W., Holt, C. L., Steger-May, K., Bucholtz, D. C., & Skinner, C. S. (2003). Sociocultural correlates of breast cancer knowledge and screening in urban African American women. American Journal of Public Health, 93(8), 1271–1274. https://doi.org/10.2105/AJPH.93.8.127110.2105/AJPH.93.8.1271Search in Google Scholar
Lynce, F., Smith, K. L., Stein, J., DeMarco, T., Wang, Y., Wang, H., . . . Isaacs, C. (2015). Deleterious BRCA1/2 mutations in an urban population of Black women. Breast Cancer Research and Treatment, 153(1), 201–209. https://doi.org/10.1007/s10549-015-3527-810.1007/s10549-015-3527-8Search in Google Scholar
Machirori, M., Patch, C., & Metcalfe, A. (2018). Black and Minority Ethnic women’s decision-making for risk reduction strategies after BRCA testing: Use of context and knowledge. European Journal of Medical Genetics. https://doi.org/10.1016/j.ejmg.2018.12.00610.1016/j.ejmg.2018.12.006Search in Google Scholar
Mai, P. L., Vadaparampil, S. T., Breen, N., McNeel, T. S., Wideroff, L., & Graubard, B. I. (2014). Awareness of cancer susceptibility genetic testing: The 2000, 2005, and 2010 National Health Interview Surveys. American Journal of Preventive Medicine, 46(5), 440–448. https://doi.org/10.1016/j.amepre.2014.01.00210.1016/j.amepre.2014.01.002Search in Google Scholar
Malloy-Weir, L. J., Schwartz, L., Yost, J., & McKibbon, K. A. (2016). Empirical relationships between numeracy and treatment decision making: A scoping review of the literature. [edselp.]. Patient Education and Counseling, 99(3), 310–325. https://doi.org/10.1016/j.pec.2015.10.00210.1016/j.pec.2015.10.002Search in Google Scholar
Mantwill, S., Monestel-Umaña, S., & Schulz, P. J. (2015). The Relationship between Health Literacy and Health Disparities: A Systematic Review. PLoS One, 10(12), e0145455. https://doi.org/10.1371/journal.pone.014545510.1371/journal.pone.0145455Search in Google Scholar
Mathew Knowles reveals he is battling breast cancer. (2019, October 2). In Good Morning America. ABC. https://www.goodmorningamerica.com/culture/story/mathew-knowles-reveals-battling-breast-cancer-men-speak-65979408Search in Google Scholar
Mazzocco, K., Masiero, M., Carriero, M. C., & Pravettoni, G. (2019). The role of emotions in cancer patients’ decision-making. Ecancermedicalscience, 13, 914. https://doi.org/10.3332/ecancer.2019.91410.3332/ecancer.2019.914Search in Google Scholar
McBride, C. M., Birmingham, W. C., & Kinney, A. Y. (2015). Health psychology and translational genomic research: Bringing innovation to cancer-related behavioral interventions. The American Psychologist, 70(2), 91–104. https://doi.org/10.1037/a003656810.1037/a0036568Search in Google Scholar
McCullough, M. (2019, October 2). Beyonce’s dad, Mathew Knowles, has hereditary breast cancer. What we know about BRCA genes. Https://Www.Inquirer.Com. https://www.inquirer.com/health/beyonce-mathew-knowles-breast-cancer-brca-20191002.htmlSearch in Google Scholar
Methodology Reports | HINTS. (n.d.). National Cancer Institute. Retrieved December 16, 2018, from https://hints.cancer.gov/data/methodology-reports.aspxSearch in Google Scholar
Miron-Shatz, T., Hanoch, Y., Katz, B. A., Doniger, G. M., & Ozanne, E. M. (2015). Willingness to test for BRCA1/2 in high risk women: Influenced by risk perception and family experience, rather than by objective or subjective numeracy? Judgment & Decision Making, 10(4), 386–399. a9h.Search in Google Scholar
Mode, N. A., Evans, M. K., & Zonderman, A. B. (2016). Race, Neighborhood Economic Status, Income Inequality and Mortality. PLoS One, 11(5), e0154535. https://doi.org/10.1371/journal.pone.015453510.1371/journal.pone.0154535Search in Google Scholar
Mooney, S. J., & Pejaver, V. (2018). Big data in public health: Terminology, machine learning, and privacy. Annual Review of Public Health, 39(1), 95–112. https://doi.org/10.1146/annurev-publhealth-040617-01420810.1146/annurev-publhealth-040617-014208Search in Google Scholar
Mouzon, D. M., Taylor, R. J., Nguyen, A. W., Ifatunji, M. A., & Chatters, L. M. (2019). Everyday Discrimination Typologies Among Older African Americans: Gender and Socioeconomic Status. The Journals of Gerontology: Series B. https://doi.org/10.1093/geronb/gbz08810.1093/geronb/gbz088Search in Google Scholar
Murray, C. J. L., Kulkarni, S. C., Michaud, C., Tomijima, N., Bulzacchelli, M. T., Iandiorio, T. J., & Ezzati, M. (2006). Eight Americas: Investigating mortality disparities across races, counties, and race-counties in the United States. PLoS Medicine, 3(9), e260. https://doi.org/10.1371/journal.pmed.003026010.1371/journal.pmed.0030260Search in Google Scholar
Nelson, A. (2016). The Social Life of DNA: Race, Reparations, and Reconciliation After the Genome (Reprint edition). Beacon Press.Search in Google Scholar
O’Brien, K. M., Cole, S. R., Tse, C.-K., Perou, C. M., Carey, L. A., Foulkes, W. D., . . . Millikan, R. C. (2010). Intrinsic breast tumor subtypes, race, and long-term survival in the Carolina Breast Cancer Study. Clinical Cancer Research, 16(24), 6100–6110. https://doi.org/10.1158/1078-0432.CCR-10-153310.1158/1078-0432.CCR-10-1533Search in Google Scholar
OMB DIRECTIVE 15: RACE AND ETHNIC STANDARDS FOR FEDERAL STATISTICS AND ADMINISTRATIVE REPORTING. Retrieved October 19, 2019, from https://wonder.cdc.gov/wonder/help/populations/bridged-race/directive15.htmlSearch in Google Scholar
Opatt, D. M., Morrow, M., & Daly, M. (2006). The incidence of BRCA1 and BRCA2 variants of unknown significance varies in different ethnic populations. Journal of Clinical Oncology, 24(18_suppl), 10002–10002.10.1200/jco.2006.24.18_suppl.10002Search in Google Scholar
Pal, T., Bonner, D., Cragun, D., Monteiro, A. N. A., Phelan, C., Servais, L., . . . Vadaparampil, S. T. (2015). A high frequency of BRCA mutations in young black women with breast cancer residing in Florida. Cancer, 121(23), 4173–4180. https://doi.org/10.1002/cncr.2964510.1002/cncr.29645Search in Google Scholar
Pal, T., Vadaparampil, S., Betts, J., Miree, C., Li, S., & Narod, S. A. (2008). BRCA1/2 in high-risk African American women with breast cancer: Providing genetic testing through various recruitment strategies. Genetic Testing, 12(3), 401–407. https://doi.org/10.1089/gte.2007.010810.1089/gte.2007.0108Search in Google Scholar
Peek, M. E., Nunez-Smith, M., Drum, M., & Lewis, T. T. (2011). Adapting the everyday discrimination scale to medical settings: Reliability and validity testing in a sample of African American patients. Ethnicity & Disease, 21(4), 502–509.Search in Google Scholar
Peters, E., & Bjalkebring, P. (2015). Multiple numeric competencies: When a number is not just a number. Journal of Personality and Social Psychology, 108(5), 802–822. https://doi.org/10.1037/pspp000001910.1037/pspp0000019Search in Google Scholar
Phelan, J. C., & Link, B. G. (2015). Is Racism a Fundamental Cause of Inequalities in Health? Annual Review of Sociology, 41(1), 311–330. https://doi.org/10.1146/annurev-soc-073014-11230510.1146/annurev-soc-073014-112305Search in Google Scholar
Platt, J., Bollinger, J., Dvoskin, R., Kardia, S. L., & Kaufman, D. (2014). Public preferences regarding informed consent models for participation in population-based genomic research. Genetics in Medicine : Official Journal of the American College of Medical Genetics, 16(1), 11–18. https://doi.org/10.1038/gim.2013.5910.1038/gim.2013.59Search in Google Scholar
Postolica, R., Iorga, M., Savin, M., Azoicai, D., & Enea, V. (2018). The utility of Leventhal’s model in the analysis of the psycho-behavioral implications of familial cancer - a literature review. Archives of Medical Science : AMS, 14(5), 1144–1154.https://doi.org/10.5114/aoms.2016.6314910.5114/aoms.2016.63149Search in Google Scholar
Powe, B. D., & Johnson, A. (1995). Fatalism as a barrier to cancer screening among African-Americans: Philosophical perspectives. Journal of Religion and Health, 34(2), 119–126. https://doi.org/10.1007/BF0224876710.1007/BF02248767Search in Google Scholar
Quillin, J. M. (2016). Lifestyle Risk Factors Among People Who Have Had Cancer Genetic Testing. Journal of Genetic Counseling; New York, 25(5), 957–964. http://dx.doi.org.proxy.lib.fsu.edu/10.1007/s10897-015-9925-610.1007/s10897-015-9925-6Search in Google Scholar
Ramirez, A. G., & Thompson, I. M. (2017). How will the ‘cancer moonshot’ impact health disparities? Cancer Causes & Control, 28(9), 907–912. https://doi.org/10.1007/s10552-017-0927-610.1007/s10552-017-0927-6Search in Google Scholar
Reyna, V. F., Nelson, W. L., Han, P. K., & Pignone, M. P. (2015). Decision making and cancer. The American Psychologist, 70(2), 105–118. https://doi.org/10.1037/a003683410.1037/a0036834Search in Google Scholar
Richardson, L. C., Henley, S. J., Miller, J. W., Massetti, G., & Thomas, C. C. (2016). Patterns and Trends in Age-Specific Black-White Differences in Breast Cancer Incidence and Mortality - United States, 1999-2014. MMWR. Morbidity and Mortality Weekly Report, 65(40), 1093–1098. https://doi.org/10.15585/mmwr.mm6540a110.15585/mmwr.mm6540a1Search in Google Scholar
Rini, C., Henderson, G. E., Evans, J. P., Berg, J. S., Foreman, A. K. M., Griesemer, I., . . . Roche, M. I. (2019). Genomic knowledge in the context of diagnostic exome sequencing: Changes over time, persistent subgroup differences, and associations with psychological sequencing outcomes. Genetics in Medicine, 21(12), 1–9. https://doi.org/10.1038/s41436-019-0622-y10.1038/s41436-019-0622-ySearch in Google Scholar
Roberts, M. C., Taber, J. M., & Klein, W. M. (2018). Engagement with Genetic Information and Uptake of Genetic Testing: The Role of Trust and Personal Cancer History. Journal of Cancer Education; New York, 33(4), 893–900. http://dx.doi.org.proxy.lib.fsu.edu/10.1007/s13187-016-1160-910.1007/s13187-016-1160-9Search in Google Scholar
Roberts, M. C., Turbitt, E., & Klein, W. M. P. (2019). Psychosocial, attitudinal, and demographic correlates of cancer-related germline genetic testing in the 2017 Health Information National Trends Survey. Journal of Community Genetics, 10(4), 453–459. https://doi.org/10.1007/s12687-018-00405-410.1007/s12687-018-00405-4Search in Google Scholar
Ross, K., Stoler, J., & Carcioppolo, N. (2018). The relationship between low perceived numeracy and cancer knowledge, beliefs, and affect. PLoS One, 13(6), e0198992. https://doi.org/10.1371/journal.pone.019899210.1371/journal.pone.0198992Search in Google Scholar
Massey, D. S., & Rugh, J. S. (2014). Segregation in Post-Civil Rights America: Stalled Integration or End of the Segregated Century? Du Bois Review, 11(2), 205–232. https://doi.org/10.1017/S1742058X1300018010.1017/S1742058X13000180Search in Google Scholar
Salloum, R. G., George, T. J., Silver, N., Markham, M.-J., Hall, J. M., Guo, Y., Bian, J., & Shenkman, E. A. (2018). Rural-urban and racial-ethnic differences in awareness of direct-to-consumer genetic testing. BMC Public Health; London, 18. http://dx.doi.org.proxy.lib.fsu.edu/10.1186/s12889-018-5190-610.1186/s12889-018-5190-6Search in Google Scholar
Sankar, P. L., & Parker, L. S. (2017). The Precision Medicine Initiative’s All of Us Research Program: An agenda for research on its ethical, legal, and social issues. Genetics in Medicine, 19(7), 743–750. https://doi.org/10.1038/gim.2016.18310.1038/gim.2016.183Search in Google Scholar
Saulsberry, K., & Terry, S. F. (2013). The need to build trust: A perspective on disparities in genetic testing. Genetic Testing and Molecular Biomarkers, 17(9), 647–648. https://doi.org/10.1089/gtmb.2013.154810.1089/gtmb.2013.1548Search in Google Scholar
Scully, R. (2000). Role of BRCA gene dysfunction in breast and ovarian cancer predisposition. Breast Cancer Research, 2(5), 324–330. https://doi.org/10.1186/bcr7610.1186/bcr76Search in Google Scholar
Seemayer, Z. (2019, October 23). Maury Povich Reflects on How Paternity Tests Became His Show’s Ticket to Ratings Gold (Exclusive). Entertainment Tonight. https://www.etonline.com/maury-povich-reflects-on-how-paternity-tests-became-his-shows-ticket-to-ratings-gold-exclusiveSearch in Google Scholar
Shields, A. E., Burke, W., & Levy, D. E. (2008). Differential use of available genetic tests among primary care physicians in the United States: Results of a national survey. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 10(6), 404–414. https://doi.org/10.1097/GIM.0b013e318177018410.1097/GIM.0b013e3181770184Search in Google Scholar
Standards for Maintaining, Collecting, and Presenting Federal Data on Race and Ethnicity, (2016). https://www.federalregister.gov/documents/2016/09/30/2016-23672/standards-for-maintaining-collecting-and-presenting-federal-data-on-race-and-ethnicitySearch in Google Scholar
Staudigl, C., Pfeiler, G., Hrauda, K., Renz, R., Berger, A., Lichtenschopf, R., . . . Tea, M.-K. M. (2016). Changes of Socio-demographic data of clients seeking genetic counseling for hereditary breast and ovarian cancer due to the “Angelina Jolie Effect”. BMC Cancer, 16(1), 436. https://doi.org/10.1186/s12885-016-2472-110.1186/s12885-016-2472-1Search in Google Scholar
Strekalova, Y. A. (2018). When Trust Is Not Enough: A Serial Mediation Model Explaining the Effect of Race Identity, eHealth Information Efficacy, and Information Behavior on Intention to Participate in Clinical Research. Health Education & Behavior, 45(6), 1036–1042. https://doi.org/10.1177/109019811875782210.1177/1090198118757822Search in Google Scholar
Survey Instruments | HINTS. (2017). https://hints.cancer.gov/data/survey-instruments.aspxSearch in Google Scholar
Susswein, L. R., Skrzynia, C., Lange, L. A., Booker, J. K., Graham, M. L., III, & Evans, J. P. (2008). Increased uptake of BRCA1/2 genetic testing among African American women with a recent diagnosis of breast cancer. Journal of Clinical Oncology, 26(1), 32–36. https://doi.org/10.1200/JCO.2007.10.637710.1200/JCO.2007.10.6377Search in Google Scholar
Taber, J. M., Chang, C. Q., Lam, T. K., Gillanders, E. M., Hamilton, J. G., & Schully, S. D. (2015). Prevalence and Correlates of Receiving and Sharing High-Penetrance Cancer Genetic Test Results: Findings from the Health Information National Trends Survey. Public Health Genomics; Basel, 18(2), 67–77. http://dx.doi.org.proxy.lib.fsu.edu/10.1159/00036874510.1159/000368745Search in Google Scholar
Tabor, H. K., Jamal, S. M., Yu, J.-H., Crouch, J. M., Shankar, A. G., Dent, K. M., . . . Bamshad, M. J. (2017). My46: a Web-based tool for self-guided management of genomic test results in research and clinical settings. Genetics in Medicine, 19(4), 467–475. https://doi.org/10.1038/gim.2016.13310.1038/gim.2016.133Search in Google Scholar
Tracy, B. (2019, October 9). Mathew Knowles Urged Daughters Beyoncé and Solange to Get the BRCA Gene Test After Breast Cancer Battle. People. https://people.com/health/mathew-knowles-beyonce-solange-brca-gene-test-breast-cancer-battle/Search in Google Scholar
Tufekci, Z. (2014). Engineering the public: Big data, surveillance and computational politics. First Monday, 19(7). https://doi.org/10.5210/fm.v19i7.490110.5210/fm.v19i7.4901Search in Google Scholar
U.S. Department of Health and Human Services, Office of Disease Prevention and Health Promotion. (2010). National Action Plan to Improve Health Literacy—Health.gov. https://health.gov/communication/initiatives/health-literacy-action-plan.aspSearch in Google Scholar
U.S. National Library of Medicine. (2019). Breast cancer. Genetics Home Reference: Your Guide to Understanding Genetic Conditions. https://ghr.nlm.nih.gov/condition/breast-cancerSearch in Google Scholar
Washington, H. A. (2008). Medical Apartheid: The Dark History of Medical Experimentation on Black Americans from Colonial Times to the Present (Reprint edition). Anchor.Search in Google Scholar
Wheeler, S. B., Reeder-Hayes, K. E., & Carey, L. A. (2013). Disparities in breast cancer treatment and outcomes: Biological, social, and health system determinants and opportunities for research. The Oncologist, 18(9), 986–993. https://doi.org/10.1634/theoncologist.2013-024310.1634/theoncologist.2013-0243Search in Google Scholar
Williams, D. R., Lawrence, J. A., & Davis, B. A. (2019). Racism and Health: Evidence and Needed Research. Annual Review of Public Health, 40(1), 105–125. https://doi.org/10.1146/annurev-publhealth-040218-04375010.1146/annurev-publhealth-040218-043750Search in Google Scholar
Williams, D. R., Yan Yu., Jackson, J. S., & Anderson, N. B. (1997). Racial Differences in Physical and Mental Health: Socio-economic Status, Stress and Discrimination. Journal of Health Psychology, 2(3), 335–351. https://doi.org/10.1177/13591053970020030510.1177/135910539700200305Search in Google Scholar
Janet Yang, Z., McComas, K., Gay, G., Leonard, J. P., Dannenberg, A. J., & Dillon, H. (2010). From information processing to behavioral intentions: Exploring cancer patients’ motivations for clinical trial enrollment. Patient Education and Counseling, 79(2), 231–238. https://doi.org/10.1016/j.pec.2009.08.01010.1016/j.pec.2009.08.010Search in Google Scholar
Zikmund-Fisher, B. J., Couper, M. P., Singer, E., Levin, C. A., Fowler, F. J., Ziniel, S., Ubel, P. A., & Fagerlin, A. (2010). The DECISIONS Study: A Nationwide Survey of United States Adults Regarding 9 Common Medical Decisions. Medical Decision Making, 30(5_suppl), 20–34. https://doi.org/10.1177/0272989X0935379210.1177/0272989X09353792Search in Google Scholar
Zuberi, T. (2001). Thicker than blood: How racial statistics lie. U of Minnesota Press.Search in Google Scholar
© 2020 Lynette Hammond Gerido, published by De Gruyter
This work is licensed under the Creative Commons Attribution 4.0 International License.