Accessible Requires Authentication Published by De Gruyter July 2, 2015

Building blocks for bioinspired electrets: molecular-level approach to materials for energy and electronics

Jillian M. Larsen, Eli M. Espinoza, Joshua D. Hartman, Chung-Kuang Lin, Michelle Wurch, Payal Maheshwari, Raman K. Kaushal, Michael J. Marsella, Gregory J. O. Beran and Valentine I. Vullev

Abstract

In biology, an immense diversity of protein structural and functional motifs originates from only 20 common proteinogenic native amino acids arranged in various sequences. Is it possible to attain the same diversity in electronic materials based on organic macromolecules composed of non-native residues with different characteristics? This publication describes the design, preparation and characterization of non-native aromatic β-amino acid residues, i.e. derivatives of anthranilic acid, for polyamides that can efficiently mediate hole transfer. Chemical derivatization with three types of substituents at two positions of the aromatic ring allows for adjusting the energy levels of the frontier orbitals of the anthranilamide residues over a range of about one electronvolt. Most importantly, the anthranilamide residues possess permanent electric dipoles, adding to the electronic properties of the bioinspired conjugates they compose, making them molecular electrets.


Corresponding authors: Valentine I. Vullev, Department of Bioengineering, University of California, Riverside, CA, 92507, USA; Department of Chemistry, University of California, Riverside, CA, 92507, USA; Department of Biochemistry, University of California, Riverside, CA, 92507, USA; and Materials Science and Engineering Program, University of California, Riverside, CA, 92507, USA, e-mail: ; and Gregory J. O. Beran and Michael J. Marsella, Department of Chemistry, University of California, Riverside, CA, 92507, USA, e-mail: (G. J. O. Beran), (M. J. Marsella)

Acknowledgments

Funding for this work was from the USA. National Science Foundation (grants CHE 1465284, CBET 0935995 and CBET 0923408, as well as IGERT DGE 0903667 for J.M.L); and funding for the theoretical component of the work (G.J.O.B. and J.D.H.) was from the USA. National Science Foundation (grant CHE-1362465) and supercomputer time from XSEDE (grant TG-CHE110064). We also extend our gratitude to the UCR Office of Research and Economic Development for their FY14-15 Proof of Concept Award (V.I.V.).

References

[1] D. N. Beratan, C. Liu, A. Migliore, N. F. Polizzi, S. S. Skourtis, P. Zhang, Y. Zhang. Acc. Chem. Res.48, 474 (2015). Search in Google Scholar

[2] U. Brandt. BIOspektrum20, 267 (2014). Search in Google Scholar

[3] F. Sun, Q. Zhou, X. Pang, Y. Xu, Z. Rao. Curr. Op. Struct. Biol.23, 526 (2013). Search in Google Scholar

[4] P. Venditti, L. Di Stefano, S. Di Meo. Mitochondrion13, 71 (2013). Search in Google Scholar

[5] J. J. Warren, J. R. Winkler, H. B. Gray. Coordinat. Chem. Rev.257, 165 (2013). Search in Google Scholar

[6] J. Barber, P. D. Tran. J. Royal Soc. Interface10, 20120984 (2013). Search in Google Scholar

[7] G. Centi, S. Perathoner. Photoelectrochemical CO2 activation toward artificial leaves in Chem. Energ. Stor, R. Schlögl (Ed.), pp. 379–400, Walter de Gruyter GmbH, Berlin/Boston (2013). ISBN 978-3-11-026407-4; e-ISBN 978-3-11-026632-0; http://www.degruyter.com/viewbooktoc/product/179232. Search in Google Scholar

[8] K. S. Joya, Y. F. Joya, K. Ocakoglu, R. van de Krol. Angew. Chem. Int. Edit.52, 10426 (2013). Search in Google Scholar

[9] D. G. Nocera. Acc. Chem. Res.45, 767 (2012). Search in Google Scholar

[10] J. Michl. Nat. Chem.3, 268 (2011). Search in Google Scholar

[11] S. Kirner, M. Sekita, D. M. Guldi. Adv. Mater.26, 1482 (2014). Search in Google Scholar

[12] D. Gust, T. A. Moore, A. L. Moore. Acc. Chem. Res.42, 1890 (2009). Search in Google Scholar

[13] D. L. DuBois. Inorg. Chem.53, 3935 (2014). Search in Google Scholar

[14] C. Zhang, Y. Yan, Y. S. Zhao, J. Yao. Acc. Chem. Res.47, 3448 (2014). Search in Google Scholar

[15] T. W. Ng, M. F. Lo, M. K. Fung, W. J. Zhang, C. S. Lee. Adv. Mater.26, 5569 (2014). Search in Google Scholar

[16] T. Shears. Phil. Trans. Royal Soc. A370, 805 (2012). Search in Google Scholar

[17] N. Nagaosa, Y. Tokura. Physica. Scripta. TT146, 014020 (2012). Search in Google Scholar

[18] B. M. Savoie, N. E. Jackson, L. X. Chen, T. J. Marks, M. A. Ratner. Acc. Chem. Res.47, 3385 (2014). Search in Google Scholar

[19] J. N. Israelachvili, K. Kristiansen, M. A. Gebbie, D. W. Lee, S. H. Donaldson, S. Das, M. V. Rapp, X. Banquy, M. Valtiner, J. Yu. J. Phys. Chem. B117, 16369 (2013). Search in Google Scholar

[20] M. W. Williams. AIP Advances2, 010701 (2012). Search in Google Scholar

[21] S. Upadhyayula, T. Quinata, S. Bishop, S. Gupta, N. R. Johnson, B. Bahmani, K. Bozhilov, J. Stubbs, P. Jreij, P. Nallagatla, V. I. Vullev. Langmuir28, 5059 (2012). Search in Google Scholar

[22] K. Chau, B. Millare, A. Lin, S. Upadhyayula, V. Nuñez, H. Xu, V. I. Vullev. Microfluid. Nanofluid.10, 907 (2011). Search in Google Scholar

[23] B. Millare, M. Thomas, A. Ferreira, H. Xu, M. Holesinger, V. I. Vullev. Langmuir24, 13218 (2008). Search in Google Scholar

[24] V. Nuñez, S. Upadhyayula, B. Millare, J. M. Larsen, A. Hadian, S. Shin, P. Vandrangi, S. Gupta, H. Xu, A. P. Lin, G. Y. Georgiev, V. I. Vullev. Anal. Chem.85, 4567 (2013). Search in Google Scholar

[25] C. Hong, D. Bao, M. S. Thomas, J. M. Clift, V. I. Vullev. Langmuir24, 8439 (2008). Search in Google Scholar

[26] V. I. Vullev, J. Wan, V. Heinrich, P. Landsman, P. E. Bower, B. Xia, B. Millare, G. Jones, II. J. Am. Chem. Soc.128, 16062 (2006). Search in Google Scholar

[27] G. Jones, II, V. I. Vullev. J. Phys. Chem. A106, 8213 (2002). Search in Google Scholar

[28] G. Jones, II, V. I. Vullev. Photochem. Photobiol. Sci.1, 925 (2002). Search in Google Scholar

[29] D. A. Doyle, J. M. Cabral, R. A. Pfuetzner, A. L. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait, R. MacKinnon. Science280, 69 (1998). Search in Google Scholar

[30] R. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait, R. MacKinnon. Nature415, 287 (2002). Search in Google Scholar

[31] S. Tanaka, R. A. Marcus. J. Phys. Chem. B101, 5031 (1997). Search in Google Scholar

[32] E. Galoppini, M. A. Fox. J. Am. Chem. Soc.118, 2299 (1996). Search in Google Scholar

[33] M. A. Fox, E. Galoppini. J. Am. Chem. Soc.119, 5277 (1997). Search in Google Scholar

[34] S. Yasutomi, T. Morita, Y. Imanishi, S. Kimura. Science304, 1944 (2004). Search in Google Scholar

[35] Y.-G. K. Shin, M. D. Newton, S. S. Isied. J. Am. Chem. Soc.125, 3722 (2003). Search in Google Scholar

[36] B. Giese, M. Graber, M. Cordes. Curr. Op. Chem. Biol.12, 755 (2008). Search in Google Scholar

[37] H. B. Gray, J. R. Winkler. Q. Rev. Biophy.36, 341 (2003). Search in Google Scholar

[38] H. B. Gray, J. R. Winkler. Proc. Natnl. Acad. Sci. USA102, 3534 (2005). Search in Google Scholar

[39] V. I. Vullev, G. Jones, II. Res. Chem. Intermed.28, 795 (2002). Search in Google Scholar

[40] G. Jones, II, V. I. Vullev. Org. Lett.4, 4001 (2002). Search in Google Scholar

[41] G. Jones, II, V. Vullev, E. H. Braswell, D. Zhu. J. Am. Chem. Soc.122, 388 (2000). Search in Google Scholar

[42] G. Jones, II, L. N. Lu, V. Vullev, D. Gosztola, S. Greenfield, M. Wasielewski. Bioorg. Med. Chem. Lett.5, 2385 (1995). Search in Google Scholar

[43] G. Jones, II, X. Zhou, V. I. Vullev. Photochem. Photobiol. Sci.2, 1080 (2003). Search in Google Scholar

[44] S. L. Mayo, W. R. Ellis Jr., R. J. Crutchley, H. B. Gray. Science233, 948 (1986). Search in Google Scholar

[45] D. Bao, S. Upadhyayula, J. M. Larsen, B. Xia, B. Georgieva, V. Nunez, E. M. Espinoza, J. D. Hartman, M. Wurch, A. Chang, C.-K. Lin, J. Larkin, K. Vasquez, G. J. O. Beran, V. I. Vullev. J. Am. Chem. Soc.136, 12966 (2014). Search in Google Scholar

[46] B. Xia, D. Bao, S. Upadhyayula, G. Jones, V. I. Vullev. J. Org. Chem.78, 1994 (2013). Search in Google Scholar

[47] V. I. Vullev. J. Phys. Chem. Lett.2, 503 (2011). Search in Google Scholar

[48] M. K. Ashraf, R. R. Pandey, R. K. Lake, B. Millare, A. A. Gerasimenko, D. Bao, V. I. Vullev. Biotechnol. Progr.25, 915 (2009). Search in Google Scholar

[49] I. Huc. Eur. J. Org. Chem.2004, 17 (2004). Search in Google Scholar

[50] L. Sebaoun, V. Maurizot, T. Granier, B. Kauffmann, I. Huc. J. Am. Chem. Soc.136, 2168 (2014). Search in Google Scholar

[51] R. Orlowski, O. Vakuliuk, M. P. Gullo, O. Danylyuk, B. Ventura, B. Koszarna, A. Tarnowska, N. Jaworska, A. Barbieri, D. T. Gryko. Chem. Commun.51, 8284 (2015). Search in Google Scholar

[52] N. Chandramouli, Y. Ferrand, G. Lautrette, B. Kauffmann, C. D. Mackereth, M. Laguerre, D. Dubreuil, I. Huc. Nat. Chem.7, 334 (2015). Search in Google Scholar

[53] Q. A. Gan, Y. Ferrand, C. Y. Bao, B. Kauffmann, A. Grelard, H. Jiang, I. Huc. Science331, 1172 (2011). Search in Google Scholar

[54] A. S. Voisin-Chiret, S. Rault. Pure Appl. Chem.84, 2467 (2012). Search in Google Scholar

[55] D. W. Zhang, X. Zhao, Z. T. Li. Acc. Chem. Res.47, 1961 (2014). Search in Google Scholar

[56] P. Prabhakaran, G. Priya, G. J. Sanjayan. Angew. Chem. Int. Edit.51, 4006 (2012). Search in Google Scholar

[57] M. Wolffs, N. Delsuc, D. Veldman, N. Van Anh, R. M. Williams, S. C. J. Meskers, R. A. J. Janssen, I. Huc, A. P. H. J. Schenning. J. Am. Chem. Soc.131, 4819 (2009). Search in Google Scholar

[58] Y. Hamuro, S. J. Geib, A. D. Hamilton. J. Am. Chem. Soc.118, 7529 (1996). Search in Google Scholar

[59] G. Mansour, W. Creedon, P. C. Dorrestein, J. Maxka, J. C. MacDonald, R. Helburn. J. Org. Chem.66, 4050 (2001). Search in Google Scholar

[60] C. O. Kappe, B. Pieber, D. Dallinger. Angew. Chem. Int. Edit.52, 1088 (2013). Search in Google Scholar

[61] A. de la Hoz, A. Diaz-Ortiz, A. Moreno. Chem. Soc. Rev.34, 164 (2005). Search in Google Scholar

[62] D. Rehm, A. Weller. Israel. J. Chem.8, 259 (1970). Search in Google Scholar

[63] S. Trasatti. Pure Appl. Chem.58, 955 (1986). Search in Google Scholar

[64] D. Bao, S. Ramu, A. Contreras, S. Upadhyayula, J. M. Vasquez, G. Beran, V. I. Vullev. J. Phys. Chem. B114, 14467 (2010). Search in Google Scholar

[65] D. Bao, B. Millare, W. Xia, B. G. Steyer, A. A. Gerasimenko, A. Ferreira, A. Contreras, V. I. Vullev. J. Phys. Chem. A113, 1259 (2009). Search in Google Scholar

[66] S. Upadhyayula, D. Bao, B. Millare, S. S. Sylvia, K. M. M. Habib, K. Ashraf, A. Ferreira, S. Bishop, R. Bonderer, S. Baqai, X. Jing, M. Penchev, M. Ozkan, C. S. Ozkan, R. K. Lake, V. I. Vullev. J. Phys. Chem. B115, 9473 (2011). Search in Google Scholar

[67] J. Hu, B. Xia, D. Bao, A. Ferreira, J. Wan, G. Jones, V. I. Vullev. J. Phys. Chem. A113, 3096 (2009). Search in Google Scholar

[68] J. Wan, A. Ferreira, W. Xia, C. H. Chow, K. Takechi, P. V. Kamat, G. Jones, V. I. Vullev. J. Photochem. Photobiol. A197, 364 (2008). Search in Google Scholar

[69] M. Born. Z. Phys.1, 45 (1920). Search in Google Scholar

[70] J. F. Odonnell, C. K. Mann. J. Electroanal. Chem.13, 157 (1967). Search in Google Scholar

[71] S. Guo, D. Bao, S. Upadhyayula, W. Wang, A. B. Guvenc, J. R. Kyle, H. Hosseinibay, K. N. Bozhilov, V. I. Vullev, C. S. Ozkan, M. Ozkan. Adv. Funct. Mater.23, 5199 (2013). Search in Google Scholar

[72] V. I. Vullev, G. Jones. Tetrahedr. Lett.43, 8611 (2002). Search in Google Scholar

[73] G. Jones, II, D. Yan, J. Hu, J. Wan, B. Xia, V. I. Vullev. J. Phys. Chem. B111, 6921 (2007). Search in Google Scholar

[74] H. Lu, D. Bao, M. Penchev, M. Ghazinejad, V. I. Vullev, C. S. Ozkan, M. Ozkan. Adv. Sci. Lett.3, 101 (2010). Search in Google Scholar

[75] G. Jones, II, V. I. Vullev. J. Phys. Chem. A105, 6402 (2001). Search in Google Scholar

[76] G. Jones, II, V. I. Vullev. Org. Lett.3, 2457 (2001). Search in Google Scholar

[77] J. M. Vasquez, A. Vu, J. S. Schultz, V. I. Vullev. Biotechnol. Progr.25, 906 (2009). Search in Google Scholar

[78] W. Wang, S. Guo, M. Penchev, J. Zhong, J. Lin, D. Bao, V. Vullev, M. Ozkan, C. S. Ozkan. J. Nanosci. Nanotechnol.12, 6913 (2012). Search in Google Scholar

[79] M. Ghazinejad, J. R. Kyle, S. Guo, D. Pleskot, D. Bao, V. I. Vullev, M. Ozkan, C. S. Ozkan. Adv. Funct. Mater.22, 4519 (2012). Search in Google Scholar

[80] V. I. Vullev, H. Jiang, G. Jones, II. Topics Fluoresc. Spectrosc.10, 211 (2005). Search in Google Scholar

[81] A. D. Becke. J. Chem. Phys.98, 5648 (1993). Search in Google Scholar

[82] C. T. Lee, W. T. Yang, R. G. Parr. Phys. Rev. B37, 785 (1988). Search in Google Scholar

[83] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople. J. Chem. Phys.72, 650 (1980). Search in Google Scholar

[84] M. J. Frisch et al., Gaussian 09, Revision A.1, Gaussian Inc. Wallingford CT, 2009. Search in Google Scholar

[85] E. Cances, B. Mennucci. J. Math. Chem.23, 309 (1998). Search in Google Scholar

[86] B. Mennucci, E. Cances, J. Tomasi. J. Phys. Chem. B101, 10506 (1997). Search in Google Scholar

[87] E. Cances, B. Mennucci, J. Tomasi. J. Chem. Phys.107, 3032 (1997). Search in Google Scholar

[88] L. Onsager. J. Am. Chem. Soc.58, 1486 (1936). Search in Google Scholar

[89] X. Y. Zhu, Q. Yang, M. Muntwiler. Acc. Chem. Res.42, 1779 (2009). Search in Google Scholar

[90] R. D. Pensack, J. B. Asbury. J. Phys. Chem. Lett.1, 2255 (2010). Search in Google Scholar

[91] J. Guo, H. Ohkita, H. Benten, S. Ito. J. Am. Chem. Soc.132, 6154 (2010). Search in Google Scholar

[92] M. Muntwiler, Q. Yang, W. A. Tisdale, X. Y. Zhu. Phys. Rev. Lett.101, 196403 (2008). Search in Google Scholar

[93] H. Scher, S. Rackovsky. J. Chem. Phys.81, 1994 (1984). Search in Google Scholar

[94] A. Moura, M. A. Savageau, R. Alves. PLoS One8, e77319 (2013). Search in Google Scholar

Supplemental Material

The online version of this article (DOI: 10.1515/pac-2015-0109) offers supplementary material, available to authorized users.

Published Online: 2015-7-2
Published in Print: 2015-8-1

©2015 IUPAC & De Gruyter