Abstract
A new multicomponent method for the synthesis of N-alkyl-2-(Z-1,2-diferrocenylvinyl)-4,5-dihydrooxazolinium salts 3a–f, 5-(N-alkyl-2′,3′-diferrocenyl-acryloylamido)-3-aza-3-alkylpentanols 4a–d, (E)-N-alkyl-N-(2-morpholinoethyl)-2,3-diferrocenylacrylamides 9a,b,e,f and (E)-N-alkyl-N-(2-piperidinoethyl)-2,3-diferrocenylacrylamides 10a,c from reactions of 2,3-diferrocenylcyclopropenone 1 with bis-1,4-N,O-nucleophiles in the presence of triethyloxonium tetrafluoroborate, alkyl iodides, morpholine, piperidine and Et3N is described. The characterization of the new compounds was done by IR, 1H- and 13C-NMR spectroscopy, mass-spectrometry, elemental analysis and X-ray diffraction studies.
Introduction
Nowadays, derivatives of ferrocene are considered to be modular building blocks in organic synthesis and are usually used to introduce a redox-responsive moiety into molecules. Such compounds find many applications in nonlinear optics, molecular electronic devices, redox polymers, ceramics [1], asymmetric catalysis [2], [3], [4], [5], biochemistry [6], [9], medicinal [10], [11], [12], [13], [14] and bioorganometallic chemistry [15], [16], [17], [18], [19], [20], [21], [22], etc. Development of new methods for the synthesis of ferrocenylheterocycles with a conjugated system of double bonds and several heteroatoms in the cycle is of interest for producing novel iron-containing compounds, which are an important category of materials [23], [24], [25], [26].
The use of the 2,3-diferrocenylcyclopropenylium salts and bis-1,3- or bis-1,4-N,O-heteronucleophiles as adducts for such synthesis makes it possible to obtain heterocyclic compounds whose structures contain both ferrocene fragments and conjugated multiple bonds with several heteroatoms in the cycles [27], [28]. This served as the basis for the preparation of diferrocenyl-1,2,3-triazines [29], -1,2,4-triazines [30], -pyridazines [31], -pyridines [32], -pyrimidines [33], [34], and -oxazines [35], as well as imidazolines [36].
The interest in oxazoline compounds bearing ferrocenyl substituents in the molecules can be traced back to the discovery of ferrocene [37]. This is determined by a peculiar chemical behavior of such compounds due to mutual influence of the metallocene and heterocyclic moieties. Little information concerning the synthesis and chemistry of ferrocenyl-4,5-dihydrooxazoles is available. To date, only the preparation of 2-ferrocenyloxazolines has been described [38] together with some of their chemical properties. However, ferrocenyl-substituted oxazolines are still scarcely studied. Investigations of the chemical transformations of such compounds are certainly of interest for theoretical, practical and synthetic organic chemistry, as well as for the search of compounds with favorable practical properties, such as thermal stability, electrical conductivity (even superconductivity), biological activity, nonlinear optical effects, etc. [39]. In this paper we studied the synthesis of ferrocenyl-4,5-dihydrooxazoles and their salts using the condensation of 2,3-diferrocenylcyclopropenone (multicomponent) and of 2,3-diferrocenylcyclopropenylium tetrafluorobarate with the derivatives of 1,2-aminoalcohols. Reactions of this type in the chemistry of cyclopropenylium cations have not yet been studied.
Results and discussion
The initial 2,3-diferrocenylcyclopropenone 1 was prepared from ferrocene and tetrachlorocyclopropene as is described in [40], [41].
We found that 2,3-diferrocenylcyclopropenone 1 interacted with 1,2-aminoalcohols 2a–d in the presence of triethyloxonium tetrafluoroborate, alkyl iodides and Et3N during boiling in CHCl3 or CH3CN with the formation of a mixture of two products: 3-N-alkyl-2-(1,2-diferrocenylvinyl)-4,5-dihydrooxazolinium iodides 3a–d and 2-(N-alkyl-2′,3′-diferrocenylacrylamido)ethylmorpholines 4a–d, whose yields depend on the molar excess of the reagents 2a–d, temperature, and duration of the reaction (Scheme 1, Table 1).

Multicomponent reactions of 2,3-diferrocenylcyclopropenone 1 with 1,2-aminoalcohols 2a–f.
Multicomponent reactions of 2,3-diferrocenylcyclopropenone 1 with 1,2-aminoalcohols 2a–d.
Relations of reagents 1 and 2a,b in mmols | Solvent | Temp. (°C) | Time (h) | Yield 3a/4aor 3b/4b(%) | Time (h) | Yield 3a/4aor 3b/4b(%) |
---|---|---|---|---|---|---|
1/2a(1:2) | CHCl3 | 70 | 6 | 28/35 | 12 | 30/44 |
1/2b(1:2) | CHCl3 | 70 | 6 | 32/40 | 12 | 32/43 |
1/2c(1:2) | CH3CN | 80 | 6 | 23/34 | 12 | 31/45 |
1/2d(1:2) | CH3CN | 80 | 8 | 28/39 | 12 | 33/44 |
1/2a(1:1) | CH3CN | 80 | 8 | 62/4 | 12 | 71/8 |
1/2b(1:1) | CH3CN | 80 | 6 | 57/3 | 12 | 74/10 |
1/2c(1:1) | CHCl3 | 70 | 6 | 54/8 | 12 | 75/8 |
1/2d(1:1) | CHCl3 | 70 | 6 | 60/61 | 12 | 78/8 |
1/2a(1:3) | CHCl3 | 70 | 3 | 10/31 | 8 | 9/71 |
1/2a(1:3) | CHCl3 | 70 | 4 | 11/34 | 8 | 10/80 |
1/2a(1:3) | CHCl3 | 70 | 5 | 17/27 | 8 | 8/81 |
1/2a(1:3) | CHCl3 | 70 | 6 | 20/24 | 8 | 6/79 |
Individual diferrocenylvinyloxazolinium iodides 3a–d and 5-(N-alkyl-2′,3′-diferrocenylacryloylamido)-3-aza-3-alkylpentanols 4a–d were isolated using Al2O3 column chromatography (activity grade III, elution with hexane: ether 2:1). The compounds obtained are represented by fine crystalline substances of red and orange color, respectively, storage-stable in the solid state. The structures of compounds 3a–d and 4a–d were determined on the basis of mass spectrometry, IR, 1H and 13C NMR spectroscopy and elemental analysis (for 4a–d).
Treatment of the compound 1 (1 mmol) with 1,2-aminoalcohols 2a–d (1 mmol) afforded the N-alkyl-2-(Z-1,2-diferrocenylvinyl)oxazolinium salts 3a–d (yields~71–78%) and compounds 4a–d (yields~8–10%). The reaction of the cyclopropenone 1 with a two-fold molar excess of N-alkylaminoalcohols 2a–d resulted in the N-alkyl-2-(cis-1,2-diferrocenylvinyl)oxazolinium salts 3a–d (~30–32%) and 5-(N-alkyl-2′,3′-diferrocenylacryloylamide)-3-aza-3-alkylpentanols 4a–d (~43–45%); the reaction of the cyclopropenone 1 with a three-fold molar excess of 1,2-aminoalcohols 2a–d afforded preferentially the 5-(N-alkyl-2′,3′-diferrocenylacryloylamide)-3-aza-3-alkylpentanols 4a–d (yields~71–81%) (Scheme 1, Table 1).
The structures of compounds 3a–d and 4a–d were determined on the basis of mass spectrometry, IR, 1H and 13C NMR spectroscopy and elemental analysis (for 4a–d). The 1H NMR spectra of oxazolinium salts 3a–d contain signals from the protons of two ferrocene substituents, singlets from one olefin proton, doublets from the protons of methyl groups (3c,d), and also the respective numbers of signals from the CH3–, CH3–CH2–, CH2– and CH-fragments of the oxazolinium rings. The information in the 13C NMR spectra of compounds 3a–d also confirms the structures of the resultant compounds (see the Experimental section). According to 1H and 13C NMR spectroscopic data, salts 3a–d are exclusively formed in the form of one geometric isomer with, presumably, cis-oriented ferrocene substituents at the double bond in the 1,2-diferrocenylvinyl fragment.
The 1H NMR spectra of compounds 4a–d contain the necessary numbers of signals from the protons of two ferrocene groups, methyl or ethyl substituents and also the necessary numbers of signals from the protons of methylene and metine fragments, as well as one singlet from olefin protons. The structures of compounds 4a–d were also derived on the basis of IR spectra, which contain absorption bands characteristic for C=O and OH groups. The 13C NMR spectra of compounds 4a–d also fully confirm their structures (see the Experimental section).
X-Ray diffraction analysis of single crystals of compound 4a obtained by crystallization from CH2Cl2 confirmed that the structure of 4a is 2-(N-methyl-2′,3′-diferrocenylacrylamido)-3-methyl-3-azapentanol 4a. The general view of the molecule 4a and its principal characteristics are given in Fig. 1a. The character of the packing of molecules in the crystals is shown in Fig. 1b; these require no special comments.

(a) Crystal structure and (b) crystal packing of compound 4a. Selected bond lengths (Å) and angles (°): C(11)–C(12) 1.346(5), C(12)–C(13) 1.500(5), C(13)–O(1) 1.246(5), C(13)–N(1) 1.340(5), C(14)–N(1) 1.460(5), C(15)–N(1) 1.468(5), C(16)–N(2) 1.462(5), C(17)–N(2) 1.462(6), C(18)–N(2) 1.461(6), C(18)–C(19) 1.499(7), C(19)–O(2) 1.409(6); C(11)–C(12)–C(13) 116.1(3), O(1)–C(13)–N(1) 121.5(4), O(1)–C(13)–C(12) 118.8(4), N(1)–C(13)–C(12) 119.6(3), N(1)–C(15)–C(16) 110.5(3), N(2)–C(16)–C(15) 112.0(4), N(2)–C(18)–C(19) 114.4(4), O(2)–C(19)–C(18) 114.7(4), C(13)–N(1)–C(14) 124.3(3), C(14)–N(1)–C(15) 117.4(3), C(13)–N(1)–C(15) 117.6(3), C(18)–N(2)–C(16) 110.6(3), C(18)–N(2)–C(17) 110.6(3), C(16)–N(2)–C(17) 110.1(4).
The supposed mechanism of the formation of 2-(1,2-diferrocenylvinyl)-4,5-dihydrooxazolinium cations 3a–d is shown in Scheme 2. The 1,2-aminoalcohol attacks the C(1) carbon atom of the cyclopropenylium cations twice with the formation of intermediate spirane oxazolidines 5a–d, which subsequently undergo an intramolecular transformation (with the opening of the three-carbon ring) into intermediate vinylcarbenes 6a–d and allylic carbocations 7a–d, and then into salts 3a–d.

Plausible mechanism of the formation of 2-(1,2-diferrocenylvinyl)-4,5-dihydrooxazolinium salts 3a–d.
We found also that 2,3-diferrocenylcyclopropenone 1 (1 mmol) reacted similarly with 1,2-aminoalcohols 2a,b,e,f (1 mmol) upon boiling in benzene or acetonitrile in the presence of triethyloxonium tetrafluoroborate (1.2 mmol), alkyl iodides, Et3N and morpholine 8a (1 mmol) to form a mixture of two products: 3a,b,e,f (~7–12%) and (E)-N-alkyl-N-(2-morpholinoethyl)-2,3 diferrocenylacrylamides 9a,b,e,f (~70–75%) (Scheme 3). The reaction products 3a,b,e,f and 9a,b,e,f were separated using Al2O3 (activity grade III) column chromatography. Their structures were confirmed using mass spectrometry, elemental analysis, IR, 1H and 13C NMR spectroscopy.

Multicomponent reactions of the 2,3-diferrocenylcyclopropenone 1 with 1,2-aminoalcohols 2a,b,e,f in the presence of morpholine.
The 1H NMR spectra of compounds 9a,b,e,f contained signals of singlets from the protons of the methyl groups of the N–Me fragment (δ=3.20, 2.96 and 2.87 ppm) for compounds 9a, 9e and 9f, respectively, singlets from the protons of the olefin CH= fragment (δ=6.26, 6.42, 7.37 and 7.43 ppm), signals from the protons of the corresponding numbers of the ferrocenyl, N-ethyl and phenyl substituents, and also from the CH2– and CH-groups of the –CH2–CH2– and –CH2– CH-fragments. The data of the 13C NMR spectra of compounds 9a,b,e,f confirmed their structure (see the Experimental section).
The formation of products with linear structures 4a–f and 9a,b,e,f in the reactions of cyclopropenone 1 with 1,4-bis-N,O-nucleophiles 2a–f proceeds, in our opinion, via the opening of the five-membered ring in the N-alkyloxazolinium cations 3a–f as a result of the nucleophilic attacks of the nitrogen atoms in the 1,4-bis-N,O-nucleophiles 2a–f on the carbon atoms C(5) of the heterocyclic systems of the oxazoliniun salts. This suggestion has been confirmed in studies of the chemical behavior of oxazolinium cations 3a,c upon reaction with other nucleophiles, as for example, with piperidine 2g (Scheme 4).

Plausible mechanism of the ring-opening of oxazolinium salts.
Thus, actually we found that the treatment of N-alkyloxazolinium cations 3a,c with piperidine 8b under similar conditions resulted in (E)-N-alkyl-N-(2-piperidinoethyl)-2,3-diferrocenylacrylamides 10a,c with 70% and 73% yields, respectively (Scheme 4). The data of mass spectrometry, elemental analysis, IR, 1H and 13C NMR spectroscopy confirmed their structure.
X-Ray diffraction analysis of single crystals of compounds 9b, 9e and 9f obtained by crystallization from CH2Cl2 were undertaken to confirm their structures. The general view of the molecules 9b, 9e and 9f and their principal characteristics are given in Figs. 2a, 3a and 4a, respectively; the character of the packing of the molecules in the crystals are shown in Figs. 2b, 3b and 4b.

(a) Crystal structure and (b) crystal packing of compound 9b. Selected bond lengths (Å) and angles (°): C(6)–C(16) 1.339(4), C(6)–C(7) 1.513(4), C(7)–O(1) 1.229(3), C(7)–N(1) 1.340(5), C(14)–N(1) 1.348(4), C(8)–N(1) 1.465(4), C(9)–N(2) 1.465(4), C(10)–N(2) 1.460(4); C(16)–C(6)–C(7) 118.3(2), O(1)–C(7)–N(1) 121.7(3), O(1)–C(7)–C(6) 120.9(3), N(1)–C(7)–C(6) 117.3(2), N(1)–C(8)–C(9) 111.1(2), N(2)–C(10)–C(11) 109.8(3), C(7)–N(1)–C(8) 118.0(2), C(14)–N(1)–C(7) 124.7(2), C(10)–N(2)–C(9) 112.3(2).

(a) Crystal structure and (b) crystal packing of compound 9e. Selected bond lengths (Å) and angles (°): N(1)–C(24) 1.464(5), C(23)–N(1) 1.349(5), O(1)–C(23) 1.231(5), C(25)–N(1) 1.465(5), C(26)–N(2) 1.460(5), C(27)–N(2) 1.453(5), C(28)–O(2) 1.418(6), C(25)–C(26) 1.530(5), N(2)–C(30) 1.462(5); C(23)–N(1)–C(24) 122.2(4), N(1)–C(23)–O(1) 122.9(4), N(1)–C(23)–C(22) 116.4(4), O(1)–C(23)–C(22) 120.6(4), C(23)–N (1)–C(25) 120.2(3), C(27)–N(2)–C(26) 111.5(3), C(28)–O(2)–C(29) 108.9(3), N(1)–C(25)–C(26) 110.6(3),N(2)–C(26)–C(25) 111.9(3).

(a) Crystal structure and (b) crystal packing of compound 9f. Selected bond lengths (Å) and angles (°) : N(1)–C(7) 1.353(4), C(20)–N(1) 1.449(5), O(1)–C(7) 1.223(4), C(9)–N(2) 1.485(4), C(8)–N(1) 1.467(4), C(14)–C(9) 1.531(5), C (8)–C(9) 1.521(5), C(7)–C(6) 1.531(4); C(7)–N(1)–C(20) 124.4(3), C(7)–N(1)–C(8) 118.6(3), C(13)–N(2)–C(9) 117.7(3), O(1)–C(7)–N(1) 122.3(3), O(1)–C(7)–C(6) 120.2(3), C(21)–C(6)–C(7)115.0(3), C(12)–O(2)–C(11) 110.2(3), N(1)–C(7)–C(6) 117.5(3), N(2)–C(9)-C(8) 112.9(3).
Following the general procedures (see the Experimental section), treatment of the 2,3-diferrocenylcyclopropenine 1 in the presence of HBF4, alkyl iodides, Et3N with bis-1,4-N,O-nucleophiles 2a–d or with the mixture of bis-1,4-N,O-nucleophiles with morpholine (2a,b,e,f) or piperidine (2a,c) afforded the diferrocenylvinyloxazolinium salts 3a–f (~15–26%), 5-(N-alkyl-2′,3′-diferrocenylacryloylamide)-3-aza-3-alkylpentanols 4a–d (yields~41–50%), (E)-N-alkyl-N-(2-morpholinoethyl)-2,3-diferrocenyl-acrylamides 9a,b,e,f (yields~32–44%) or (E)-N-alkyl-N-(2-piperidinoethyl)-2,3-diferrocenyl-acrylamides 10a,c (yields 27% and 33%, respectively).
Conclusion
The multicomponent reactions of 2,3-diferrocenylcyclopropenone 1 with bis-1,4-N,O-nucleophiles 2a–f in the presence of triethyloxonium tetrafluoroborate, alkyl iodides, morpholine and Et3N are regioselective. The double nucleophilic attacks of the C(1) atoms of the intermediate 1-ethoxy-2,3-diferrocenylcyclopropenilium tetrafluoroborate 1a in the presence other reagents to afford N-alkyl-2-(Z-1,2-diferrocenylvinyl)-4,5-oxazolinium iodides 3a–f, derivatives of the 5-(N-alkyl-2′,3′-diferrocenylacryloylamide)-3-aza-3-alkylpentanols 4a–f and (E)-N-alkyl-N-(2-morpholinoethyl)-2,3-diferrocenyl-acrylamides 9a,b,e,f. The interactions of the oxazolinium salts 4a,b,c,e,f with morpholine or piperidine formed due to the opening of the five-membered heterocycles, giving rise to one type of compounds 9a,b,e,f or (E)-N-alkyl-N-(2-piperidinoethyl)-2,3-diferrocenyl-acrylamides 10a,c. The products with linear structures 4a–f, 9a,b,e,f and 10a,c in the reactions of cyclopropenone 1 with 1,4-bis-N,O-nucleophiles 2a–f were obtained via the opening of the five-membered ring in the N-alkyloxazolinium cations 3a–f as a result of the nucleophilic attacks of the nitrogen atoms in the 1,4-bis-N,O-nucleophiles 2a–f on the carbon atoms C(5) of the heterocyclic systems of the oxazoliniun salts. The opening of the five-membered ring in N-alkyloxazolinium cations as a result of the nucleophilic attack on the carbon atom C(5) of the heterocyclic system has been described for the first time. Such an opening, in contrast to the opening with the nucleophilic attack on the carbon atom C(2), which was described in the literature [42], [43], [44], [45], is apparently due to the influence of the 1,2-diferrocenylvinyl substituent at C(2) in oxazolinium cations. In our opinion, this feature must be of general nature, pertaining to all compounds of a similar structure; thus, they can be used in organic synthesis of macro-molecules as six-atom building blocks.
Experimental section
General
All the solvents were dried according to the standard procedures and were freshly distilled before use [46]. Column chromatography was carried out on alumina (Brockmann activity III). The 1H and 13C NMR spectra were recorded on a Unity Inova Varian spectrometer (300 and 75 MHz) for solutions in CDCl3 (3a–f, 4a–d, 10a,c, 9e,f), in C6D6 (9b), in C6D6 and CDCl3 (9a), with Me4Si as the internal standard. The IR spectra were measured on a Spectrophotometer FT-IR (Spectrum RXI Perkin Elmer instruments) using KBr pellets. The mass spectra were obtained on a Varian MAT CH-6 instrument (EI MS, 70 eV). Elementar Analysensysteme LECO CHNS-900 was used for elemental analyses. The unit cell parameters and the X-ray diffraction intensities of 4a, 9b, 9e and 9f were recorded on a Gemini (detector Atlas CCD, Cryojet N2) diffractometer. The structures of compounds 4a, 9b, 9e and 9f were solved by the direct method (SHELXS-97) [47], [48], [49] and refined using full-matrix least-squares on F2.
Multicomponent reactions of 2,3-diferrocenylcyclopropenone 1 with 1,2-aminoalcohols 2a–d in the presence of triethyloxonium tetrafluorobo-rate, alkyl iodides and Et3N
To the solution of 2,3-diferrocenilcyclopropenone 1 (2.5 mmol) in CHCl3, or CH3CN (50 mL) were added with stirring triethyloxonium tetrafluoroborate (3.0 mL, 1.0 M solution in dichloromethane), 1,2-aminoalcohols (2a–d, 5 mmol), methyl or ethyl iodides (0.5 mL) and Et3N (1.0 mL). After stirring for 3–12 h at 70–80 °C, the volatiles were removed in vacuo; chromatography of the residue on Al2O3 (hexane-ether, 2:1), yielded compounds 3a–d and 4a–d (Table 1).
2-(Z-2,3-diferrocenylvinyl)-3-methyl-4,5-dihydrooxazol-3-ium iodide (3a)
Red powder, yield 0.46 g (30%), m.p. 108–109°C. IR (KBr): ν 467, 478, 731, 808, 905, 953, 1001, 1028, 1044, 1106, 1186, 1204, 1263, 1253, 1284, 1363, 1388, 1420, 1457, 1476, 1604, 1650, 1709, 2869, 2926, 2959, 3054, 3094, 3357 cm−1. 1H NMR (300 MHz, CDCl3): δ 2.59 (3H, s, CH3), 3.07 (2H, t, CH2, J=5.4 Hz), 4.05 (5H, s, C5H5), 4.07 (5H, s, C5H5), 4.19 (1H, m, C5H4), 4.23 (3H, m, C5H4), 4.24 (2H, m, C5H4), 4.45 (2H, t, CH2, J=5.7 Hz), 7.28 (1H, s, CH=). 13C NMR (75 MHz, CDCl3): δ 36.42 (CH3), 50.52, 63.89 (2CH2), 69.23, 69.43 (2C5H5), 69.92 (2C(cpC5H4)), 69.59 (2C(cpC5H4)), 70.60 (4C(cpC5H4)), 79.49, 79.69 (2CipsoFc), 137.00 (CH=), 126.29, 167.70 (2C). C26H26Fe2INO. MS (El, 70 eV): m/z 127, 480 [M]+.
2-(Z-1,2-diferrocenylvinyl)-3-ethyl-4,5-dihydrooxazol-3-ium iodide (3b)
Red powder, yield 0.5 g (32%), m.p. 109–110°C. IR (KBr): ν 469, 480, 727, 777, 814, 899, 1000, 1026, 1040, 1049, 1106, 1146, 1189, 1214, 1253, 1330, 1386, 1411, 1443, 1474, 1605, 1633, 1699, 1787, 2050, 2240, 2821, 2866, 2891, 2961, 3088, 3327 cm−1. 1H NMR (300 MHz, CDCl3): δ 1.19 (3H, t, CH3, J =7.2 Hz ), 2.79 (2H, q, CH2, J =7.2 Hz), 3.07 (2H, t, CH2, J=5.7 Hz), 4.05 (5H, s, C5H5), 4.07 (5H, s, C5H5), 4.22 (2H, m, C5H4), 4.24 (4H, m, C5H4), 4.41 (2H, t, CH2, J=5.7 Hz), 4. 45 (2H, m, C5H4), 7.29 (1H, s, CH=). 13C NMR (75 MHz, CDCl3): δ 15.47 (CH3), 44.08, 48.30, 64.23 (3CH2), 69.28, 69.47 (2C5H5), 67.96, 69.64, 70.60, 70.62 (2C5H4), 79.54, 79.72 (2CipsoFc), 137.06 (CH=), 126.45, 167.71 (2C). MS (El, 70 eV): m/z 127, 494 [M]+.
2-(Z-1,2-diferrocenylvinyl)-3,4-dimethyl-4,5-dihydrooxazol-3-ium iodide (3c)
Red powder, yield 0.48 g (31%), m.p. 84–85°C. IR (KBr): ν 478, 641, 710, 732, 807, 833, 879, 992, 1028, 1038, 1104, 1180, 1245, 1291, 1322, 1341, 1371, 1445, 1475, 1596, 1637, 1707, 2880, 2920, 2956, 2970, 3108 cm−1. 1H NMR (300 MHz, CDCl3): δ 1.23 (3H, d, CH3, J=6.6 Hz), 2.55 (3H, s, CH3), 3.05 (1H, m, CH), 4.05 (5H, s, C5H5), 4.07 (5H, s, C5H5), 4.17 (1H, dd, CH2, J=6.9, 11.1 Hz), 4.22 (2H, m, C5H4), 4.27 (4H, m, C5H4), 4.31 (1H, dd, CH2, J=4.8, 11.1 Hz), 4.45 (1H, m, C5H4), 4.48 (1H, m, C5H4), 7.29 (1H, s, CH=). 13C NMR (75 MHz, CDCl3): δ 17.30, 34.06 (2CH3), 54.01 (CH2), 67.95 (CH), 69.29, 69.48 (2C5H5), 68.07, 69.68 (4C(cpC5H4)) 70.51 (2C(cpC5H4)), 70.66, 70.73 (2C(cpC5H4)), 79.51, 79.76 (2CipsoFc), 137.07 (CH=), 126.50, 167.67 (2C). C27H28Fe2INO. MS (El, 70 eV): m/z 127, 479, 495 [M]+.
2-(Z-1,2-diferrocenylvinyl)-3,5-dimethyl-4,5-dihydrooxazol-3-ium iodide (3d)
Red powder, yield 0.51 g (33%), m.p. 81–82°C. IR (KBr): ν 478, 491, 649, 725, 811, 817, 832, 900, 972, 999, 1025, 1040, 1104, 1182, 1207, 1240, 1299, 1339, 1391, 1410, 1445, 1454, 1481, 1604, 1621, 1700, 2863, 2924, 2964, 2970, 3072, 3084 cm−1. 1H NMR (300 MHz, CDCl3): δ 1.44 (3H, d, CH3, J=6.3 Hz), 2.54 (3H, s, CH3), 2.82 (1H, dd, CH2, J=4.5, 12.6 Hz), 2.98 (1H, dd, CH2, J=7.5, 12.6 Hz), 4.06 (5H, s, C5H5), 4.07 (5H, s, C5H5), 4.20 (1H, m, C5H4), 4.24 (4H, m, C5H4), 4.28 (1H, m, C5H4), 4.46 (1H, m, C5H4), 4.50 (1H, m, C5H4), 5.27 (1H, m, CH), 7.27 (1H, s, CH=). 13C NMR (75 MHz, CDCl3): δ 18.40, 36.60 (2CH3), 56.72 (CH2), 67.89 (CH), 69.35, 69.51 (2C5H5), 70.48, 70.61, 70.64, 70.89 (2C5H4), 79.74, 79.85 (2CipsoFc), 136.61 (CH=), 126.85, 167.25 (2C). C27H28Fe2INO. MS (El, 70 eV): m/z 127, 480, 495 [M]+.
3,6-Diaza-(E-2,3-diferrocenyl)acryloyl-3-methylheptanol (4a)
Orange powder, yield 0.61 g (44%), m.p. 98–99°C. IR (KBr): ν 466, 619, 645, 745, 803, 814, 874, 1000, 1025, 1036, 1106, 1161, 1249, 1294, 1312, 1333, 1407, 1448, 1461, 1499, 1572, 1595, 1622, 1769, 2050, 2190, 2240, 2776, 2800, 2875, 2936, 3091, 3415 cm−1. 1H NMR (300 MHz, CDCl3): δ 2.40 (3H, s, CH3), 2.61 (1H, bs, OH), 2.68 (2H, t, CH2, J =5.1 Hz ), 2.77 (2H, t, CH2, J =6.3 Hz ), 3.20 (3H, s, CH3), 3.66 (4H, m, 2CH2), 4.09 (5H, s, C5H5), 4.12 (5H, s, C5H5), 4.17 (3H, m, C5H4), 4.23 (4H, m, C5H4), 4.37 (1H, m, C5H4), 6.25 (1H, s, CH=). 13C NMR (75 MHz, CDCl3): δ 37.78, 44.80 (2CH3), 42.26, 54.86, 58.76, 59.23 (4CH2), 69.11, 69.20 (2C5H5), 68.13, 68.71, 69.21, 69.65 (2C5H4), 80.22 (2CipsoFc), 127.28 (CH=), 131.17 (C), 171.53 (C=O). Anal. Calcd. for C29H34Fe2N2O2: C, 62.84; H, 6.18; N, 5.05. Found: C, 62.65; H, 6.21; N, 5.09. MS (El, 70 eV): m/z 554 [M]+.
3,6-Diaza-(E-2,3-diferrocenyl)acryloyl-3-ethyloctanol (4b)
Orange powder, yield 0.63 g (43%), m.p. 95–96°C. IR (KBr): ν 465, 481, 743, 764, 806, 821, 900, 999, 1027, 1041, 1083, 1104, 1163, 1187, 1249, 1296, 1350, 1404, 1456, 1498, 1572, 1594, 1616, 2045, 2100, 2230, 2785, 2842, 2875, 2920, 2942, 3088, 3100, 3188, 3437 cm−1. 1H NMR (300 MHz, CDCl3): δ 1.11 (3H, t, CH3, J =7.2 Hz ), 1.27 (3H, t, CH3, J =6.9 Hz ), 2.04 (1H, bs, OH), 2.63 (2H, t, CH2, J =6.9 Hz), 2.69 (4H, m, 2CH2, J =6.9, 7.2 Hz), 2.74 (2H, t, CH2, J =6.9 Hz), 3.54 (2H, t, CH2, J=6.9 Hz), 3.65 (2H, t, CH2, J=6.9 Hz), 4.08 (5H, s, C5H5), 4.12 (5H, s, C5H5), 4.18 (4H, m, C5H4), 4.22 (4H, m, C5H4), 6.60 (1H, s, CH=). 13C NMR (75 MHz, CDCl3): δ 12.05, 14.40 (2CH3), 42.64, 44.51, 48.12, 51.05, 55.53, 58.95 (6CH2), 69.18, 69.40 (2C5H5), 68.25, 68.72, 69.43, 69.74 (2C5H4), 80.41, 81.59 (2CipsoFc), 126.76 (CH=), 132.14 (C), 171.78 (C=O). Anal. Calcd. for C31H38 Fe2N2O2: C, 63.93; H, 6.58; N, 4.81. Found: C, 63.79; H, 6.69; N, 4.73. MS (El, 70 eV): m/z 582 [M]+.
3,6-Diaza-(E-2,3-diferrocenyl)acryloyl-2,3,5-trimethylheptanol (4c)
Orange powder, yield 0.65 g (45%) m.p. 98–99°C. IR (KBr): ν 461, 621, 647, 752, 803, 812, 876, 1001, 1026, 1035, 1105, 1161, 1253, 1300, 1315, 1338, 1409, 1444, 1460, 1504, 1578, 1598, 1629, 1756, 2045, 2188, 2242, 2781, 2823, 2867, 2946, 3087, 3435 cm−1. 1H NMR (300 MHz, CDCl3): δ 1.38 (3H, d, CH3, J=6.3 Hz), 1.46 (3H, d, CH3, J=6.3 Hz), 2.43 (1H, bs, OH), 2.54 (3H, s, CH3), 2.63 (1H, dd, CH2, J=6.6, 12.3 Hz ), 2.73 (1H, dd, CH2, J=5.1, 11.4 Hz ), 2.81 (1H, dd, CH2, J=7.2, 11.4 Hz ), 2.93 (1H, dd, CH2, J=4.5, 12.3 Hz ), 3.02 (3H, s, CH3), 3.78 (2H, m, 2CH), 4.03 (5H, s, C5H5), 4.08 (5H, s, C5H5), 4.14 (3H, m, C5H4), 4.20 (4H, m, C5H4), 4.32 (1H, m, C5H4), 6.21 (1H, s, CH=). 13C NMR (75 MHz, CDCl3): δ 21.33, 22.68, 35.52, 39.01 (4CH3), 41.22, 47.89 (2CH2), 56.07, 59.73 (2CH), 69.24, 69.28 (2C5H5), 68.32, 68.64, 69.37, 69.64 (2C5H4), 80.13, 80.22 (2CipsoFc), 126.37 (CH=), 130.97 (C), 170.85 (C=O). Anal. Calcd. for C31H38Fe2N2O2: C, 63.93; H, 6.58; N, 4.81. Found: C, 63.65; H, 6.31; N, 5.02. MS (El, 70 eV): m/z 582 [M]+.
4,7-Diaza-(E-2,3-diferrocenyl)acryloyl-4,5-dimethyloctan-2-ol (4d)
Orange powder, yield 0.64 g (44%), m.p. 98–99°C. IR (KBr): ν 449, 598, 623, 635, 747, 801, 810, 870, 1003, 1027, 1041, 1101, 1165, 1243, 1295, 1325, 1342, 1423, 1454, 1466, 1497, 1578, 1600, 1629, 1751, 2048, 2191, 2244, 2772, 2769, 2877, 2930, 3091, 3422 cm−1. 1H NMR (300 MHz, CDCl3): 1.41 (3H, d, CH3, J=6.0 Hz), 1.57 (3H, d, CH3, J=6.3 Hz), 1.76 (1H, bs, OH), 2.46 (3H, s, CH3), 2.52 (1H, dd, CH2, J=3.6, 10.5 Hz ), 2.64 (1H, dd, CH2, J=4.2, 11.7 Hz ), 2.76 (1H, dd, CH2, J=6.3, 10.5 Hz ), 3.15 (1H, dd, CH2, J=5.4, 11.7 Hz ), 3.28 (3H, s, CH3), 3.85 (2H, m, 2CH), 4.01 (5H, s, C5H5), 4.03 (5H, s, C5H5), 4.09 (3H, m, C5H4), 4.12 (4H, m, C5H4), 4.21 (1H, m, C5H4), 6.29 (1H, s, CH=). 13C NMR (75 MHz, CDCl3): δ 21.46, 23.28, 36.15, 39.18 (4CH3), 45.31, 45.93 (2CH2), 54.11, 58.64 (2CH), 69.13, 69.21 (2C5H5), 68.27, 68.71, 69.42, 69.59 (2C5H4), 80.11, 80.18 (2CipsoFc), 127.04 (CH=), 131.15 (C), 171.32 (C=O). Anal. Calcd. for C31H38Fe2N2O2: C, 63.93; H, 6.58; N, 4.81. Found: C, 63.79; H, 6.73; N, 4.67. MS (El, 70 eV): m/z 582 [M]+.
Multicomponent reactions of 2,3-diferrocenylcyclopropenone 1 with 1,2-aminoalcohols 2a–c,e,f in the presence of triethyloxonium tetrafluoroborate, morpholine or piperidine, and alkyl iodides
To the solution of 2,3-diferrocenilcyclopropenone 1 (2.5 mmol) in CHCl3, or CH3CN (50 mL) were added with stirring triethyloxonium tetrafluoroborate (3.0 mL, 1.0 M solution in dichloromethane), 1,2-aminoalcohols 2a–c,e,f, (2.5 mmol), morpholine or piperidine (2.0 mL), and methyl or ethyl iodides (1.0 mL). After stirring for 3–12 h at 70–80 °C, the volatiles were removed in vacuo; chromatography of the residue on Al2O3 (hexane-ether, 3:1), yielded compounds 3a–c (7–12%), 3e,f (10–11%), 9a,b,e,f and 10a,c (Table 1).
2-(Z-1,2-diferrocenylvinyl)-3-methyl-4-phenyl-4,5-dihydrooxazol-3-ium iodide (3e)
Red powder, yield 0.17 g (10%), m.p. 148–150°C. IR (KBr): ν 483, 544, 700, 757, 816, 898, 1000, 1015, 1032, 1051, 1106,1174, 1185, 1209, 1243, 1257, 1282, 1332, 1378, 1388, 1436, 1450, 1479, 1491, 1605, 1631, 1712, 2786, 2835, 2890, 2940, 2974, 3093, 3368 cm−1. 1H NMR (300 MHz, CDCl3): δ 2.43 (3H, s, CH3), 4.03 (5H, s, C5H5), 4.05 (5H, s, C5H5), 4.21 (1H, dd, CH, J=5.1, 7.5 Hz), 4.19–4.24 (6H, m,C5H4), 4.35 (1H, dd, CH2, J=7.5, 10.8 Hz), 4.40 (1H, m, C5H4), 4.44 (1H, m, C5H4), 4.47 (1H, dd, CH2, J=5.1, 10.8 Hz), 7.20 (1H, s, CH=), 7.36–7.49 (5H, m, C6H5). 13C NMR (75 MHz, CDCl3): δ 34.67 (CH3), 64.14 (CH2), 70.19 (CH), 69.19, 69.58 (2C5H5), 68.07, 68.07, 68.52 (6C(cpC5H4)), 69.78, 70.68 (2C(cpC5H4)), 79.52, 79.5 (2CipsoFc), 137.33 (CH=), 127.78, 127.99, 128.76 (C6H5), 126.22, 140.14, 167.44 (3C). C32H30Fe2INO. MS (El, 70 eV): m/z 541, 556 [M]+.
2-(Z-2,3-diferrocenylvinyl)-3-methyl-5-phenyl-4,5-dihydrooxazol-3-ium iodide (3f)
Red powder, yield 0.19 g (11%), m.p. 128–129°C. IR (KBr): ν 480, 593, 757, 812, 886, 1006, 1026, 1045, 1053, 1104, 1146, 1192, 1215, 1265, 1334, 1389, 1419, 1454, 1487, 1608, 1629, 1683, 1775, 2231, 2834, 2879, 2932, 3090, 3328 cm−1. 1H NMR (300 MHz, CDCl3): δ 2.56 (3H, s, CH3), 3.05 (1H, dd, CH2, J=4.5, 13.5 Hz), 3.29 (1H, dd, CH2, J=6.0, 13.5 Hz), 3.95 (5H, s, C5H5), 4.05 (5H, s, C5H5), 4.16 (1H, m, C5H4), 4.24 (4H, m, C5H4), 4.32 (1H, m, C5H4), 4.43 (1H, m, C5H4), 4.51 (1H, m, C5H4), 6.12 (1H, dd, CH, J=4.5, 6.0 Hz), 7.39 (1H, s, CH=), 7.32–7.54 (5H, m, C6H5). 13C NMR (75 MHz, CDCl3): δ 31.49 (CH3), 51.93 (CH2), 69.29, 69.48 (2C5H5), 67.98, 69.65, 70.58, 70.81 (2C5H4), 70.66 (CH), 79.87, 80.07 (2CipsoFc), 126.67, 128.33, 128.64 (C6H5), 140.20 (CH=), 137.09, 157.37, 167.64 (3C). C32H30Fe2INO. MS (El, 70 eV): m/z 127, 541, 556 [M]+.
(E)-N-methyl-N-(2-morpholinoethyl)-2,3-diferrocenyl-acrylamide (9a)
Orange powder, yield 1.06 g (75%), m.p. 125–126°C. IR (KBr): ν 477, 645, 727, 766, 815, 854, 912, 923, 1001, 1037, 1069, 1105, 1116, 1144, 1257, 1298, 1356, 1397, 1455, 1487, 1629, 1680, 1709, 2807, 2852, 2918, 2953, 3092 cm−1. 1H NMR (300 MHz, CDCl3): δ 2.60 (4H, m, CH2), 2.70 (2H, t, CH2, J=6.0 Hz ), 3.20 (3H, s, CH3), 3.69 (2H, t, CH2, J=6.0 Hz ), 3.77 (4H, m, 2CH2), 4.09 (5H, s, C5H5), 4.13 (5H, s, C5H5), 4.19 (2H, m, C5H4), 4.25 (4H, m, C5H4), 4.44 (2H, m, C5H4), 6.26 (1H, s, CH=). 13C NMR (75 MHz, C6D6): δ 37.29 (CH3), 43.14, 56.31 (2CH2), 54.05 (2CH2), 67.14 (2CH2), 69.48, 69.83 (2C5H5), 68.50, 69.02, 69.71, 70.00 (2C5H4), 81.09, 81.14 (2CipsoFc), 126.35 (CH=), 132.74 (C), 171.03 (C=O). Anal. Calcd. for C30H34Fe2N2O2: C, 63.64; H, 6.05; N, 4.94. Found: C, 63.42; H, 6.14; N, 5.07. MS (El, 70 eV): m/z 566 [M]+.
(E)-N-ethyl-N-(2-morpholinoethyl)-2,3-diferrocenyl-acrylamide (9b)
Orange powder, yield 1.03 g (71%), m.p. 103–105°C. IR (KBr): ν 471, 618, 651, 766, 788, 805, 822, 844, 852, 923, 972, 1006, 1024, 1086, 1114, 1141, 1243, 1269, 1289, 1343, 1355, 1422, 1437, 1457, 1468, 1564, 1618, 1719, 2754, 2800, 2818, 2947, 2957, 2977, 3094 cm−1. 1H NMR (300 MHz, C6D6): δ 0.99 (3H, t, CH3, J=7.5 Hz ), 2.20 (2H, m, CH2), 2.33 (4H, m, 2CH2), 2.52 (2H, m, CH2), 3.55 (2H, m, CH2), 3.66 (4H, m, 2CH2), 3.96 (5H, s, C5H5), 4.24 (5H, s, C5H5), 4.01 (3H, m, C5H4), 4.09 (2H, m, C5H4), 4.25 (3H, m, C5H4), 6.42 (1H, s, CH=). 13C NMR (75 MHz, C6D6): δ 13.76 (CH3), 39.68, 43.33 (2CH2), 53.96, 54.50 (2CH2), 56.43 (CH2), 66.84, 67.30 (2CH2), 69.18, 69.72 (2C5H5), 68.21, 68.59, 69.23, 79.74 (2C5H4), 80.63, 81.35 (2CipsoFc), 125.13 (CH=), 133.67 (C), 170.0 (C=O). Anal. Calcd. for C31H36Fe2N2O2: C, 64.16; H, 6.15; N, 4.82. Found: C, 63.93; H, 6.13; N, 4.63. MS (El, 70 eV): m/z 580 [M]+.
(E)-N-methyl-N-(2-morpholino-1-phenylethyl)-2,3-diferrocenyl-acrylamide (9e)
Orange powder, yield 1.13 g (70%), m.p. 115–117°C. IR (KBr): ν 483, 697, 707, 735, 815, 879, 911, 998, 1029, 1035, 1048, 1105, 1185, 1245, 1268, 1308, 1356, 1386, 1410, 1454, 1480, 1497, 1602, 1636, 1711, 2755, 2854, 2893, 2938, 2964, 3029, 3106 cm−1. 1H NMR (300 MHz, CDCl3): δ 2.57 (2H, m, CH2), 2.64 (2H, m, CH2), 2.96 (3H, s, CH3), 2.90 (2H, m, CH2), 3.77 (4H, m, 2CH2), 3.94 (2H, t, CH2, J=4.5 Hz), 4.07 (5H, s, C5H5), 4.13 (5H, s, C5H5), 4.16 (3H, m, C5H4), 4.18 (3H, m, C5H4), 4.22 (1H, m, C5H4), 4.24 (1H, m, C5H4), 4.42 (1H, t, CH, J=4.5 Hz ), 7.43 (1H, s, CH=), 7.40–7.49 (5H, m, C6H5). 13C NMR (75 MHz, CDCl3): δ 30.99 (CH3), 50.95 (2CH2), 67.29 (2CH2), 68.18 (CH2), 69.15, 69.29 (2C5H5), 67.79, 68.75, 69.32, 69.60 (2C5H4), 69.66 (CH), 80.26, 80.30 (2CipsoFc), 127.28 (CH=), 128.00, 128.30, 129.26 (C6H5), 131.07, 137.04 (2C), 171.49 (C=O). Anal. Calcd. for C32H38Fe2N2O2: C, 67.31; H, 5.96; N, 4.36. Found: C, 67.18; H, 5.71; N, 4.70. MS (El, 70 eV): m/z 642 [M]+.
(E)-N-methyl-N-(2-morpholino-2-phenylethyl)-2,3-diferrocenyl-acrylamide (9f)
Orange powder, yield 1.17 g (72%), m.p. 102–103°C. IR (KBr): ν 474, 631, 703, 785, 810, 878, 911, 999, 1019, 1036, 1047, 1104, 1116, 1135, 1250, 1301, 1346, 1384, 1397, 1459, 1478, 1610, 1723, 2755, 2818, 2853, 2955, 2994, 3090 cm−1. 1H NMR (300 MHz, CDCl3): δ 2.49 (2H, m, CH2), 2.75 (1H, dd, CH2, J=4.5, 12.3 Hz ), 2.87 (3H, s, CH3), 2.90 (2H, m, CH2), 3.16 (1H, t, CH2, J=12.3 Hz ), 3.82 (4H, m, 2CH2), 4.06 (10H, s, 2C5H5), 4.08 (3H, m, C5H4), 4.17 (1H, m, C5H4), 4.19 (1H, m, C5H4), 4.23 (1H, m, C5H4), 4.27 (1H, m, C5H4), 4.33 (1H, m, C5H4), 6.28(1H, dd, CH, J=4.5, 12.3 Hz ), 7.37 (1H, s, CH=), 7.24–7.47 (5H, m, C6H5). 13C NMR (75 MHz, CDCl3): δ 31.11 (CH3), 50.21 (CH2), 53.99 (2CH2), 54.05 (2CH2), 67.79 (2CH2), 69.11, 69.75 (2C5H5), 68.35, 68.68, 69.41, 69.43 (2C5H4), 69.93 (CH), 80.79, 80.84 (2CipsoFc), 128.59 (CH=), 127.76, 128.57, 130.15 (C6H5), 138.38, 147.45 (2C), 171.96 (C=O). Anal. Calcd. for C32H38Fe2N2O2: C, 67.31; H, 5.96; N, 4.36. Found: C, 67.49; H, 5.78; N, 4.35. MS (El, 70 eV): m/z 642 [M]+.
(E)-N-methyl-N-(2-piperidinoethyl)-2,3-diferrocenyl-acrylamide (10a)
Orange oil, yield 0.98 g (70%). IR (KBr): ν 479, 641, 709, 735, 807, 834, 879, 901, 992, 1001, 1028, 1038, 1104, 1180, 1245, 1290, 1340, 1354, 1387, 1410, 1446, 1474, 1597, 1638, 1691, 2879, 2920, 2956, 2970, 3094 cm−1. 1H NMR (300 MHz, CDCl3): δ 1.62 (6H, m, 3CH2), 2.51 (4H, m, 2CH2), 2.62 (2H, td, CH2, J=1.2, 6.3 Hz ), 2.89 (3H, s, CH3), 3.42 (1H, m, CH2, J=6.3 Hz), 3.86 (1H, m, CH2, J=6.3 Hz ), 4.16 (5H, s, C5H5), 4.23 (5H, s, C5H5), 4.26 (2H, m, C5H4), 4.28 (2H, m, C5H4), 4.31 (1H, m, C5H4), 4.34 (1H, m, C5H4), 4.59 (1H, m, C5H4), 4.35 (1H, m, C5H4), 6.35 (1H, s, CH=). 13C NMR (75 MHz, CDCl3): δ 24.51 (CH2), 26.04 (2CH2), 36.56 (CH2), 43.86 (CH3), 54.79 (2CH2), 56.07 (CH2), 69.30, 69.97 (2C5H5), 68.82, 69.14, 69.44, 70.20 (2C5H4), 69.93 (CH), 79.93, 81.06 (2CipsoFc), 120.94 (CH=), 131.35 (C), 171.52 (C=O). Anal. Calcd. for C31H36Fe2N2O: C, 65.97; H, 6.45; N, 4.96. Found: C, 65.68; H, 6.18; N, 4.65. MS (El, 70 eV): m/z 564.
(E)-N-methyl-N-(1-methyl-2-piperidinoethyl)-2,3-diferrocenyl-acrylamide (10c)
Orange oil, yield 1.05 g (73%). IR (KBr): ν 482, 659, 718, 7305, 814, 892, 903, 927, 999, 1027, 1039, 1105, 1179, 1194, 1242, 1253, 1306, 1357, 1389, 1409, 1448, 1477, 1600, 1630, 1680, 2870, 2894, 2935, 3087 cm−1. 1H NMR (300 MHz, CDCl3): ): δ 1.52 (3H, d, CH3, J=6.3 Hz ), 1.59 (6H, m, 3CH2), 2.47 (4H, m, 2CH2), 2.72 (3H, s, CH3), 3.54 (1H, dd, CH2, J=7.5, 13.52 Hz), 4.12 (1H, m, CH2, J=6.0, 13.2 Hz ), 4.04 (5H, s, C5H5), 4.06 (5H, s, C5H5), 4.14 (1H, m, C5H4), 4.17 (4H, m, C5H4), 4.21 (1H, m, CH), 4.26 (1H, m, C5H4), 4.44 (1H, m, C5H4), 4.52 (1H, m, C5H4), 4.80 (1H, m, CH), 6.38 (1H, s, CH=). 13C NMR (75 MHz, CDCl3): δ 24.91, 25.30 (2CH3), 25.93 (3CH2), 53.14 (2CH2), 61.65 (CH), 67.58 (CH2), 69.29, 69.35 (2C5H5), 70.14, 70.50, 70.59, 70.85 (2C5H4), 75.60 (CH), 80.66, 82.79 (2CipsoFc), 123.78 (CH=), 124.01 (C), 178.15 (C=O). Anal. Calcd. for C32H38Fe2N2O: C, 66.47; H, 6.62; N, 4.84. Found: C, 66.54; H, 6.71; N, 4.72. MS (El, 70 eV): m/z 578 [M]+.
Determination of the crystal structure
Suitable X-ray quality crystals of 4a, 9b, 9e and 9f, were grown by slow evaporation of a saturated dichloromethane solution at room temperature for three days. Data were obtained on an Oxford Difraction Gemini A diffractometer with a CCD area detector, and the CrystAlisPro and CrysAlis RED software packages were used for data collection and data integration [47]. The structures were solved using SHELXS-97 [48] and refined by full-matrix least-squares on F2 with SHELXL-97 [49]. Weighted R factors, Rw, and all goodness-of-fit indicators, S, were based F2. The observed criterion of (F2 > 2σF2) was used only for calculating the R factors. All non-hydrogen atoms were refined with anisotropic thermal parameters in the final cycles on refinement. Hydrogen atoms were placed in idealized positions, with C–H distances of 0.93 and 0.98 Å for aromatic and satured carbon atoms, respectively. The isotropic thermal parameters of the hydrogen atoms were assigned the values of Uiso=1.2 times the thermal parameters of the parent non-hydrogen atom. The unit cell parameters and the X-ray diffraction intensities were recorded on a Gemini (detector AtlasCCD, Cryojet N2) diffractometer.
Crystallographic data for 4a
Crystals of C29H34Fe2N2O2 (M=554.28), are orthorhombic, space group Pca21, at 130(2) K, a=21.8387(11), b=6.0311(3), c=19.0490(8) Å, α=90°, β=90°, γ=90°, V=2509.0(2) Å3, Z=4, dcalcd= 1.467 Mg/cm3, λ(MoKα)=0.71073 Å, F(000)=1160, μ=1.186 mm−1, index ranges −30 ≤ h ≤ 27, −8 ≤ k ≤ 8, −24 ≤ l ≤ 26, scan range 3.505 ≤ θ ≤ 29.551°, 6287 independent reflections, Rint=0.0594, 26278 total reflections, 321 refinable parameters, final R indices [I > 2σ(I)]: R1=0.0387, wR2=0.0681; R indices (all data): R1=0.0560, wR2=0.0763; goodness-of-fit on F2 1.053, largest difference peak and hole 0.466/−0.352 e Å−3.
Crystallographic data for 9b
Crystals of C31H36Fe2N2O2 (M=580.32), are monoclinic, space group P21/c, at 130(2) K, a=19.5186(16), b=7.3492(5), c=19.7752(18) Å, α=90°, β=112.066(9)°, γ=90°, V=2628.9(4) Å3, Z=4, dcalcd= 1.466 Mg/cm3, λ(MoKα)=0.71073 Å, F(000)=1216, μ=1.186 mm−1, index ranges –24 ≤ h ≤ 26, −10 ≤ k ≤ 7, −24 ≤ l ≤ 23, scan range 3.466 ≤ θ ≤ 29.579°, 6245 independent reflections, Rint=0.0498, 15151 total reflections, 335 refinable parameters, final R indices [I > 2σ(I)]: R1=0.0487, wR2=0.0881; R indices (all data): R1=0.0869, wR2=0.1077; goodness-of-fit on F2 1.076, largest difference peak and hole 0.459/−0.576 e Å−3.
Crystallographic data for 9e
Crystals of C36H38Fe2N2O2 (M=642.38), are orthorhombic, space group P212121 at 130(2) K, a=22.8618(4), b=11.6301(2), c=11.2488(2) Å, α=90°, β=90°, γ=90°, V=2990.89(9) Å3, Z=4, dcalcd= 1.427 Mg/cm3, λ(CuKα)=0.54184 Å, F(000)=1344, μ=8.053 mm−1, scan range 3.867 ≤ θ ≤ 73.451°, 5931 independent reflections, Rint=0.0535, 29921 total reflections, 335 refinable parameters, final R indices [I > 2σ(I)]: R1=0.0338, wR2=0.0786; R indices (all data): R1=0.0421, wR2=0.0916; goodness-of-fit on F2 1.090, largest difference peak and hole 0.501/−0.289 e Å−3.
Crystallographic data for 9f
Crystals of C36H38Fe2N2O2 (M=642.38), are triclinic, space group P1̅ at 130(2) K, a=10.416(5), b=12.7864(11), c=13.0952(12) Å, α=112.568(8)°, β=100.441(5)°, γ=104.393(5)°, V=1483.5(39) Å3, Z=2, dcalcd= 1.438 Mg/cm3, λ(MoKα)=0.71073 Å, F(000)=672, μ=1.014 mm−1, scan range 3.492 ≤ θ ≤ 29.582°, 7146 independent reflections, Rint=0.0417, 18941 total reflections, 335 refinable parameters, final R indices [I > 2σ(I)]: R1=0.0568, wR2=0.1244; R indices (all data): R1=0.0809, wR2=0.1415; goodness-of-fit on F2 1.064, largest difference peak and hole 0.782/−0.838 e Å−3.
CCDC 1474954 (for 4a), CCDC 1474953 (for 9b), CCDC 1499096 (for 9e) and CCDC 1499097 (for 9f) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk.
Article note:
A collection of invited papers based on presentations at the 16th International Conference on Polymers and Organic Chemistry (POC-16), Hersonissos (near Heraklion), Crete, Greece, 13–16 June 2016.
Acknowledgements
We gratefully acknowledge the Dirección General de Asuntos del Personal Academico DGAPA–UNAM (Mexico, grant IN-215015).
References
[1] R. C. J. Atkinson, V. C. Gibson, N. J. Long. Chem. Soc. Rev. 33, 313 (2004).10.1039/b316819kSearch in Google Scholar
[2] M. Tsukazaki, M. Tinkl, A. Roglans, B. J. Chapel, N. J. Taylor, V. Snickus. J. Am. Chem. Soc. 118, 685 (1996).10.1021/ja953246qSearch in Google Scholar
[3] T. Sammakia, H. A. Latham, D. R. Schaad. J. Org. Chem. 60, 10 (1995).10.1021/jo00106a005Search in Google Scholar
[4] G. Nicolosi. Tetrahedron Asymm. 5, 1639 (1994).10.1016/0957-4166(94)80069-3Search in Google Scholar
[5] M. Sawamura, Y. Ito. Chem. Rev. 92, 857 (1992).10.1021/cr00013a005Search in Google Scholar
[6] K. E. Dombrowski, W. Baldwin, J. E. Sheats. J. Organomet. Chem. 302, 281 (1986).10.1016/0022-328X(86)80097-3Search in Google Scholar
[7] A. Ferle-Vidovoć, M. Poljak-Blaži, V. Rapić, D. Škare. Cancer Biother. Radiopharm. 15, 617 (2000).10.1089/cbr.2000.15.617Search in Google Scholar
[8] N. Metzler-Notle. Angew. Chem. Int. Ed. 40, 1040 (2001).10.1002/1521-3773(20010316)40:6<1040::AID-ANIE10400>3.0.CO;2-PSearch in Google Scholar
[9] Y. Wang, M. A. Richard, T. Siden, P. Dansette, P. Pascal, A. Vessieres, D. Mansuy, G. Jaouen. Angew. Chem. Int. Ed. 55, 10431 (2016).10.1002/anie.201603931Search in Google Scholar
[10] G. Jaouen, A. Vessiéres, S. Top. Chem. Soc. Rev. 44, 8802 (2015).10.1039/C5CS00486ASearch in Google Scholar
[11] E. Hillard, A. Vessiéres, L. Thouin, G. Jaouen, C. Amatore. Angew. Chem. Int. Ed. 45, 285 (2006).10.1002/anie.200502925Search in Google Scholar
[12] S. Top, J. Tang, A. Vessiéres, D. Carrez, C. Provot, G. Jaouen. Chem. Commun.8, 955 (1996).10.1039/CC9960000955Search in Google Scholar
[13] G. Jaouen, S. Top, A. Vessiéres. Bioorganometallics: Biomolecules, Labeling, Medicine, pp. 83, Wiley-VCH, Weinheim (2006).Search in Google Scholar
[14] G. Jaouen, N. Metzler-Nolte. Medicinal Organometallic Chemistry, pp. 81, Springer, Berlin (2010).10.1007/978-3-642-13185-1Search in Google Scholar
[15] K. Severin, R. Bergs, W. Beck. Angew. Chem. Intern. Ed. 37, 1635 (1998).Search in Google Scholar
[16] P. Kopf-Maier, H. Kopf. Chem. Rev. 87, 1137 (1987).10.1021/cr00081a012Search in Google Scholar
[17] C. Biot, L. Delhaes, C. M. N.Diaye, L. A. Maciejewaki, D. Camus, D. Dive. Bioorg. Med. Chem. 7, 2843 (1999).10.1016/S0968-0896(99)00224-2Search in Google Scholar
[18] E. I. Edwards, R. Epton, G. Marrand G. K. Regers. J. Organomet. Chem.122, C49 (1976).10.1016/S0022-328X(00)82406-7Search in Google Scholar
[19] U. Schatzschneider, N. Metzler-Nolte. Angew. Chem. Int. Ed. 45, 1504 (2006).10.1002/anie.200504604Search in Google Scholar PubMed
[20] D. R. van Staveren, N. Metzler-Nolte. Chem. Rev. 104, 5931 (2004).10.1021/cr0101510Search in Google Scholar PubMed
[21] G. Gasser, I. Ott, N. Metzler-Nolte. J. Med. Chem. 54, 3 (2011).10.1021/jm100020wSearch in Google Scholar PubMed PubMed Central
[22] B. Roth, E. Aig, K. Lane, B. S. Rauckman. J. Med. Chem. 23, 379 (1980).10.1021/jm00178a007Search in Google Scholar PubMed
[23] D. Saravanakumar, N. Sengottuvelan, V. Narayananm, M. Kandaswamy, T. L. Varghese. J. Appl. Polym. Sci. 119, 2517 (2011).10.1002/app.32859Search in Google Scholar
[24] J. E. Sheats, C. E. Carraher, C. U. Pittman. Metal-Containing Polymeric Systems, pp. 420, Plenum Press, New York (1985).10.1007/978-1-4615-9415-4Search in Google Scholar
[25] Y. Gao, H. D. Li, C. F. Ke, L. L. Xie, B. Wei, Y. Yuan. Appl. Organometallic. Chem.25, 407 (2011).10.1002/aoc.1774Search in Google Scholar
[26] T. J. Peckman, P. Gómez-Elipe, I. Manners, A. Togni, R. L. Halterman. Metallocenes, Synthesis, Reactivity, Applications, pp. 723, Wiley-VCH, Weinheim, Germany (1998).Search in Google Scholar
[27] A. Togni, T. Hayashi. Ferrocenes Homogeneous Catalysis Organic Synthesis Material Science, pp. 497, VCH, Weinheim (1995).10.1002/9783527615599Search in Google Scholar
[28] F. K. Hartley. The chemistry of the Metal-Carbon-Bond. The use of Organometallic Compounds in Organic Synthesis, Vol. 4, pp. 625, Wiley, Chichester (1987).Search in Google Scholar
[29] E. I. Klimova, T. Klimova, M. Flores-Alamo, D. Méndez-Iturbide, M. Martínez-García. J. Heterocyclic Chem. 46, 477 (2009).10.1002/jhet.93Search in Google Scholar
[30] E. I. Klimova, T. Klimova, M. Flores-Alamo, L. V. Backinowsky, M. Martínez-García. Molecules14, 3161 (2009).10.3390/molecules14093161Search in Google Scholar PubMed PubMed Central
[31] E. I. Klimova, E. A. Vázquez-López, M. Flores-Alamo, T. Klimova, M. Martínez-García. Eur. J. Org. Chem. 4, 4352 (2009).10.1002/ejoc.200900505Search in Google Scholar
[32] E. I. Klimova, M. Flores-Alamo, S. Cortez-Maya, M. Martínez-Klimov, L. A. Ortiz-Frade, T. Klimova. Molecules17, 10079 (2012).10.3390/molecules170910079Search in Google Scholar PubMed PubMed Central
[33] E. I. Klimova, E. A. Vázquez-López, M. Flores-Alamo, L. A. Ortiz-Frade, G. HernándezSánchez, V. H. Sotelo-Domínguez, M. Martínez-García. J. Heterocycl. Chem. 49, 1156 (2012).10.1002/jhet.979Search in Google Scholar
[34] E. I. Klimova, J. J. Sánchez García, T. Klimova, T. Ramírez Apan, E. A. Vázquez López, M. Flores-Alamo, M. Martínez-García. J. Organomet. Chem. 708–709, 37 (2012).10.1016/j.jorganchem.2012.02.016Search in Google Scholar
[35] T. Klimova, E. I. Klimova, M. Flores-Alamo, L. V. Backinowsky, M. Martínez-García. Synthesis21, 3706 (2006).10.1055/s-2006-950288Search in Google Scholar
[36] E. I. Klimova, M. Flores-Alamo, S. Cortez Maya, J. C. García-Ramos, L. Ortiz-Frade, J. M. Méndez Stivalet. J. Organomet. Chem. 743, 24 (2013).10.1016/j.jorganchem.2013.06.003Search in Google Scholar
[37] O. B. Sutcliffe, M. R. Bryce. Tetrahedron Asymm. 14, 2297 (2003).10.1016/S0957-4166(03)00520-2Search in Google Scholar
[38] S. Gunter, K. Peter, E. Wolfgang. J. Organomet. Chem. 234, 63 (1982).10.1016/S0022-328X(00)85702-2Search in Google Scholar
[39] M. G.-A. Schvekhgeimer. Russ. Chem. Rev. 65, 80 (1996).10.1070/RC1996v065n01ABEH000199Search in Google Scholar
[40] I. Agranat, E. Aharon-Shalom. J. Am. Chem. Soc.35, 3828 (1975).Search in Google Scholar
[41] E. I. Klimova, T. Klimova, L. Ruiz-Ramírez, A. Cinquantini, M. Corsini, P. Zanello, O. S. Hernández, M. Martínez-García. Eur. J. Org. Chem. 21, 4265 (2003).10.1002/ejoc.200300318Search in Google Scholar
[42] Ch. J. Richard, Th. Damalidis, D. E. Hibbs, M. B. Hursthouse. Synlett1, 74 (1995).10.1055/s-1995-4864Search in Google Scholar
[43] E. I. Klimova, T. Klimova, S. Hernández Ortega, D. Méndez-Iturbide, A. García-Márquez, M. Martínez-García. J. Organomet. Chem. 690, 3333 (2005).10.1016/j.jorganchem.2005.04.014Search in Google Scholar
[44] T. Klimova, E. I. Klimova, J. M. Méndez Stivalet, S. Hernández-Ortega, M. Martínez-García. Eur. J. Org. Chem. 20, 4406 (2005).10.1002/ejoc.200500284Search in Google Scholar
[45] T. Eicher, S. Hauptmann. The Chemistry of Heterocycles, Structures, Reactions, Synthesis and Applications, pp. 29, Wiley-VCH GmbH & Co. KgaA, Weinheim (2006).Search in Google Scholar
[46] G. Gritzner, J. Küta. Pure Appl. Chem. 4, 461 (1984).10.1351/pac198456040461Search in Google Scholar
[47] C. C. D. CrysAlis, R. CrysAlis. Oxford Diffraction, Abingdon, UK (2009).Search in Google Scholar
[48] G. M. Sheldrick. SHELXS-97, Crystal Structure Solution. University of Göttingen, Germany (1990).Search in Google Scholar
[49] G. M. Sheldrick. SHELXS-97, Crystal Structure Refinement. University of Göttingen, Germany (1997).Search in Google Scholar
©2016 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/