Accessible Requires Authentication Published by De Gruyter January 29, 2019

Using chemical synthesis to optimise antimicrobial peptides in the fight against antimicrobial resistance

Freda F. Li and Margaret A. Brimble

Abstract

The emergence of multidrug-resistant bacteria has necessitated the urgent need for novel antibacterial agents. Antimicrobial peptides (AMPs), the host-defence molecules of most living organisms, have shown great promise as potential antibiotic candidates due to their multiple mechanisms of action which result in very low or negligible induction of resistance. However, the development of AMPs for clinical use has been limited by their potential toxicity to animal cells, low metabolic stability and high manufacturing cost. Extensive efforts have therefore been directed towards the development of enhanced variants of natural AMPs to overcome these aforementioned limitations. In this review, we present our efforts focused on development of efficient strategies to prepare several recently discovered AMPs including antitubercular peptides. The design and synthesis of more potent and stable AMP analogues with synthetic modifications made to the natural peptides containing glycosylated residues or disulfide bridges are described.

Article note

A special collection of invited papers by recipients of the IUPAC Distinguished Women in Chemistry and Chemical Engineering Awards.

References

[1] H. L. Van Epps. J. Exp. Med.203, 259 (2006). Search in Google Scholar

[2] J. O’Neil. Tackling Drug-Resistant Infections Globally: final report and recommendations; Available from: https://amr-review.org/Publications.html [Last accessed 2 Jun 2018]. Search in Google Scholar

[3] J. M. A. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu, L. J. V. Piddock. Nat. Rev. Microbiol.13, 42 (2014). Search in Google Scholar

[4] N. R. Gandhi, P. Nunn, K. Dheda, H. S. Schaaf, M. Zignol, D. van Soolingen, P. Jensen. J. Bayona. Lancet375, 1830 (2010). Search in Google Scholar

[5] M. E. Stryjewski, G. R. Corey. Clin. Infect. Dis.58, S10 (2014). Search in Google Scholar

[6] M. A. Cooper, D. Shlae. Nature472, 32 (2011). Search in Google Scholar

[7] M. S. Butler, M. A. Blaskovich, M. A. Cooper. J. Antibiot.70, 3 (2016). Search in Google Scholar

[8] E. Patridge, P. Gareiss, M. S. Kinch, D. Hoyer. Drug Discovery Today21, 204 (2016). Search in Google Scholar

[9] L. L. Silver. Clin. Microbiol. Rev.24, 71 (2011). Search in Google Scholar

[10] R. M. Epand, H. J. Vogel. Biochim. Biophys. Acta1462, 11 (1999). Search in Google Scholar

[11] A. Boto, J. M. Pérez de la Lastra, C. C. González. Molecules23, 311 (2018). Search in Google Scholar

[12] M. Sani, F. Separovic. Acc. Chem. Res.49, 1130 (2016). Search in Google Scholar

[13] G. Wang, X. Li, Z. Wang. Nucleic Acids Res.44, D1087 (2015). Search in Google Scholar

[14] J. M. Sierra, E. Fusté, F. Rabanal, T. Vinuesa. M. Viñas. Expert Opin. Biol. Ther.17, 663 (2017). Search in Google Scholar

[15] M. Mahlapuu, J. Håkansson, L. Ringstad, C. Björn. Front. Cell. Infect. Microbiol.6, 194 (2016). Search in Google Scholar

[16] G. D. Brand, R. C. Santos, L. M. Arake, V. G. Silva, L. M. C. Veras, V. Costa, C. H. N. Costa, S. S. Kuckelhaus, J. G. Alexandre, M. J. Feio, J. R. S. A. Leite. Molecules18, 7058 (2013). Search in Google Scholar

[17] H. Ishida, L. T. Nguyen, R. Gopal, T. Aizawa. H. J. Vogel. J. Am. Chem. Soc.138, 11318 (2016). Search in Google Scholar

[18] M. Stawikowski, G. B. Fields. Curr. Protoc. Protein Sci.26, 18.1.1 (2001). Search in Google Scholar

[19] J. M. Palomo. RSC Adv.4, 32658 (2014). Search in Google Scholar

[20] K. Dierking, W. Yang, H. Schulenburg. Phil. Trans. R. Soc. B371, 1 (2016). Search in Google Scholar

[21] T. Roeder, M. Stanisak, C. Gelhaus, I. Bruchhaus, J. Grötzinger. M. Leippe. Dev. Comp. Immunol.34, 203 (2010). Search in Google Scholar

[22] K. Medini, P. W. Harris, H. Kiel, A. J. Dingley, G. M. Cook. M. A. Brimble. ChemBioChem16, 328 (2015). Search in Google Scholar

[23] H. Yuji, S. Shigeru. Biomol. Concepts4, 597 (2013). Search in Google Scholar

[24] F, Åslund, K. D. Berndt, A. Holmgren. J. Biol. Chem.272, 30780 (1997). Search in Google Scholar

[25] H. Y. Kim, V. N. Gladyshev. PLoS Biol.3, 2080 (2005). Search in Google Scholar

[26] N. Metanis, E. Keinan, P. E. Dawson. J. Am. Chem. Soc.128, 16684 (2006). Search in Google Scholar

[27] K. Medini, P. W. R. Harris, A. Menorca, K. Hards, G. M. Cook. M. A. Brimble. Chem. Sci.7, 2005 (2016). Search in Google Scholar

[28] V. L. Cavera, T. D. Arthur, D. Kashtanov, M. L. Chikindas. Int. J. Antimicrob. Agents46, 494 (2015). Search in Google Scholar

[29] G. E. Norris, M. L. Patchett. Curr. Opin. Struct. Biol.40, 112 (2016). Search in Google Scholar

[30] W. J. Kelly, R. V. Asmundson, C. M. Huang. J. Appl. Bacteriol.81, 657 (1996). Search in Google Scholar

[31] J. Stepper, S. Shastri, T. S. Loo, J. C. Preston, P. Novak, P. Man, C. H. Moore, V. Havlicek, M. L. Patchett, G. E. Norris. FEBS Lett.585, 645 (2011). Search in Google Scholar

[32] H. Wang, W. A. van der Donk. J. Am. Chem. Soc.133, 16394 (2011). Search in Google Scholar

[33] H. Wang, T. J. Oman, R. Zhang, C. V. Garcia De Gonzalo, Q. Zhang, W. A. van der Donk. J. Am. Chem. Soc.136, 84 (2014). Search in Google Scholar

[34] M. A. Brimble, P. J. Edwards, P. W. Harris, G. E. Norris, M. L. Patchett, T. H. Wright, S. Yang, S. E. Carley. Chem. Eur. J.21, 3556 (2015). Search in Google Scholar

[35] Z. Amso, S. W. Bisset, S. Yang, P. W. R. Harris, T. H. Wright, C. D. Navo, M. L. Patchett, G. E. Norris. M. A. Brimble. Chem. Sci.9, 1686 (2018). Search in Google Scholar

[36] S. W. Bisset, S. Yang, Z. Amso, P. W. R. Harris, M. L. Patchett, M. A. Brimble. G. E. Norris. ACS Chem. Biol.13, 1270 (2018). Search in Google Scholar

[37] World Health Organisation (WHO). Global Tuberculosis Report, 2017; available from: http://www.who.int/tb/publications/global_report/en/ [Last accessed 26 Jun 2018]. Search in Google Scholar

[38] G. Sotgiu, R. Centis, L. D’ambrosio, G. B. Migliori. Cold Spring Harbor Perspect. Med.5, a017822 (2015). Search in Google Scholar

[39] A. I. Zumla, S. H. Gillespie, M. Hoelscher, P. P. J. Philips, S. T. Cole, I. Abubakar, T. D. McHugh, M. Schito, M. Maeurer. A. J. Nunn. Lancet Infect. Dis.14, 327 (2014). Search in Google Scholar

[40] D. Quan, G. Nagalingam, R. Payne, J. A. Triccas. Int. J. Infect. Dis.56, 212 (2017). Search in Google Scholar

[41] M. Dong, B. Pfeiffer, K.-H. Altmann. Drug Discovery Today.22, 585 (2017). Search in Google Scholar

[42] S. R. M. Ibrahim, C. C. Min, F. Teuscher, R. Ebel, C. Kakoschke, W. Lin, V. Wray, R. Edrada-Ebel, P. Proksch. Bioorg. Med. Chem.18, 4947 (2010). Search in Google Scholar

[43] P. Pruksakorn, M. Arai, N. Kotoku, C. Vilchèze, A. D. Baughn, P. Moodley, W. R. Jacobs, M. Kobayashi. Bioorg. Med. Chem. Lett.20, 3658 (2010). Search in Google Scholar

[44] E. Gavrish, C. S. Sit, S. Cao, O. Kandror, A. Spoering, A. Peoples, L. Ling, A. Fetterman, D. Hughes, A. Bissell. Chem. Biol.21, 509 (2014). Search in Google Scholar

[45] W. Gao, J.-Y. Kim, J. R. Anderson, T. Akopian, S. Hong, Y.-Y. Jin, O. Kandror, J.-W. Kim, I.-A. Lee, S.-Y. Lee. Antimicrob. Agents Chemother.59, 880 (2015). Search in Google Scholar

[46] Z. G. Khalil, A. A. Salim, E. Lacey, A. Blumenthal, R. J. Capon. Org. Lett.16, 5120 (2014). Search in Google Scholar

[47] L. L. Ling, T. Schneider, A. J. Peoples, A. L. Spoering, I. Engels, B. P. Conlon, A. Mueller, T. F. Schäberle, D. E. Hughes, S. Epstein. Nature517, 455 (2015). Search in Google Scholar

[48] S.-P. Zhang, L. M. De Leon Rodriguez, I. K. H. Leung, G. M. Cook, P. W. R. Harris, M. A. Brimble. Angew. Chem. Int. Ed.57, 3631 (2018). Search in Google Scholar

[49] I. Kavianinia, L. Kunalingam, P. W. R. Harris, G. M. Cook. M. A. Brimble. Org. Lett.18, 3878 (2016). Search in Google Scholar

[50] P. W. R. Harris, G. M. Cook, I. K. H. Leung. M. A. Brimble. Aust. J. Chem.70, 172 (2017). Search in Google Scholar

[51] C. E. Schumacher, P. W. R. Harris, X.-B. Ding, B. Krause, T. H. Wright, G. M. Cook, D. P. Furkert. M. A. Brimble. Org. Biomol. Chem.15, 8755 (2017). Search in Google Scholar

[52] G. Daletos, R. Kalscheuer, H. Koliwer-Brandl, R. Hartmann, N. J. de Voogd, V. Wray, W. Lin. P. Proksch. J. Nat. Prod.78, 1910 (2015). Search in Google Scholar

[53] J. Jurczak, A. Golebiowski. Chem. Rev.89, 149 (1989). Search in Google Scholar

[54] D. Pappo, M. Vartanian, S. Lang, Y. Kashman. J. Am. Chem. Soc.127, 7682 (2005). Search in Google Scholar

[55] T. Nakazawa, T. Suzuki, M. Ishii. Tetrahedron Lett.1997, 38, 8951. Search in Google Scholar

[56] D. E. DeMong, R. M. Williams. J. Am. Chem. Soc.2003, 125, 8561. Search in Google Scholar

[57] P. Pruksakorn, M. Arai, L. Liu, P. Moodley, W. R. Jacobs Jr. M. Kobayashi. Biol. Pharm. Bull.34, 1287 (2011). Search in Google Scholar

[58] M. El Hadrami, J. Lavergne, P. Viallefont, M. Y. A. Itto. A. Hasnaoui. Tetrahedron Lett.32, 3985 (1991). Search in Google Scholar

[59] Z. Wei, L. Xiangpeng, D. Ning, L. Yingxia. J. Pept. Sci.18, 163 (2012). Search in Google Scholar

[60] K. Hung, P. W. R. Harris. M. A. Brimble. J. Org. Chem.75, 8728 (2010). Search in Google Scholar

[61] K. Hung, P. W. R. Harris. M. A. Brimble. Org. Lett.14, 5784 (2012). Search in Google Scholar

[62] K. Ko, S. Wagner, S. Yang, D. P. Furkert. M. A. Brimble. J. Org. Chem.80, 8631 (2015). Search in Google Scholar

[63] J. D. Hegemann, M. Zimmermann, X. Xie, M. A. Marahiel. Acc. Chem. Res.48, 1909 (2015). Search in Google Scholar

[64] E. Gavrish, C. Sit, S. Cao, O. Kandror, A. Spoering, A. Peoples, L. Ling, A. Fetterman, D. Hughes, A. Bissell, H. Torrey, T. Akopian, A. Mueller, S. Epstein, A. Goldberg, J. Clardy. K. Lewis. Chem. Biol.21, 509 (2014). Search in Google Scholar

[65] S. Lear, T. Munshi, A. S. Hudson, C. Hatton, J. Clardy, J. A. Mosely, T. J. Bull, C. S. Sit, S. L. Cobb. Org. Biomol. Chem.14, 4534 (2016). Search in Google Scholar

[66] L. L. Ling, T. Schneider, A. J. Peoples, A. L. Spoering, I. Engels, B. P. Conlon, A. Mueller, T. F. Schäberle, D. E. Hughes, S. Epstein, M. Jones, L. Lazarides, V. A. Steadman, D. R. Cohen, C. R. Felix, K. A. Fetterman, W. P. Millett, A. G. Nitti, A. M. Zullo, C. Chen, K. Lewis. Nature517, 455 (2015). Search in Google Scholar

[67] A. M. Giltrap, L. J. Dowman, G. Nagalingam, J. L. Ochoa, R. G. Linington, W. J. Britton, R. J. Payne. Org. Lett.18, 2788 (2016). Search in Google Scholar

[68] K. Jin, I. H. Sam, K. H. L. Po, D. Lin, E. H. Ghazvini Zadeh, S. Chen, Y. Yuan, X. Li. Nat. Commun.7, 12394 (2016). Search in Google Scholar

[69] K. Jin, K. H. L. Po, S. Wang, J. A. Reuven, C. N. Wai, H. T. Lau, T. H. Chan, S. Chen, X. Li. Bioorg. Med. Chem.25, 4990 (2017). Search in Google Scholar

[70] A. Parmar, A. Iyer, C. S. Vincent, D. Van Lysebetten, S. H. Prior, A. Madder, E. J. Taylor, I. Singh. Chem. Commun.52, 6060 (2016). Search in Google Scholar

[71] A. Parmar, S. H. Prior, A. Iyer, C. S. Vincent, D. Van Lysebetten, E. Breukink, A. Madder, E. J. Taylor, I. Singh. Chem. Commun.53, 2016 (2017). Search in Google Scholar

[72] A. Parmar, A. Iyer, D. G. Lloyd, C. S. Vincent, S. H. Prior, A. Madder, E. J. Taylor, I. Singh. Chem. Commun.53, 7788 (2017). Search in Google Scholar

[73] S. A. H. Abdel Monaim, Y. E. Jad, E. J. Ramchuran, A. El-Faham, T. Govender, H. G. Kruger, B. G. de la Torre, F. Albericio. ACS Omega1, 1262 (2016). Search in Google Scholar

[74] Y. E. Jad, G. A. Acosta, T. Naicker, M. Ramtahal, A. El-Faham, T. Govender, H. G. Kruger, B. G. de la Torre, F. Albericio. Org. Lett.17, 6182 (2015). Search in Google Scholar

[75] C. Wu, Z. Pan, G. Yao, W. Wang, L. Fang, W. Su. RSC Adv.7, 1923 (2017). Search in Google Scholar

[76] K. H. Chen, S. P. Le, X. Han, J. M. Frias, J. S. Nowick. Chem. Commun.53, 11357 (2017). Search in Google Scholar

[77] S. A. H. Abdel Monaim, E. J. Ramchuran, A. El-Faham, F. Albericio, B. G. de la Torre. J. Med. Chem.60, 7476 (2017). Search in Google Scholar

[78] G. C. Girt, A. Mahindra, Al Jabri, Zaaima J. H., S. C. De, M. R. Oggioni, A. G. Jamieson. Chem. Commun.54, 2767 (2018). Search in Google Scholar

[79] Y. Zong, X. Sun, H. Gao, K. J. Meyer, K. Lewis, Y. Rao. J. Med. Chem.61, 3409 (2018). Search in Google Scholar

[80] A. Parmar, A. Iyer, S. H. Prior, D. G. Lloyd, E. T. Leng Goh, C. S. Vincent, T. Palmai-Pallag, C. Z. Bachrati, E. Breukink, A. Madder, R. Lakshminarayanan, E. J. Taylor, I. Singh. Chem. Sci.8, 8183 (2017). Search in Google Scholar

[81] K. Jin, K. H. L. Po, W. Y. Kong, C. H. Lo, C. W. Lo, H. Y. Lam, A. Sirinimal, J. A. Reuven, S. Chen, X. Li. Bioorg. Med. Chem.26, 1062 (2018). Search in Google Scholar

[82] A. Parmar, R. Lakshminarayanan, A. Iyer, V. Mayandi, E. T. Leng Goh, D. G. Lloyd, M. L. S. Chalasani, N. K. Verma, S. H. Prior, R. W. Beuerman, A. Madder, E. J. Taylor, I. Singh. J. Med. Chem.61, 2009 (2018). Search in Google Scholar

[83] H. Yang, K. H. Chen, J. S. Nowick. ACS Chem. Biol.11, 1823 (2016). Search in Google Scholar

[84] H. Yang, D. R. Du Bois, J. W. Ziller, J. S. Nowick. Chem. Commun.53, 2772 (2017). Search in Google Scholar

[85] S. A. H. Abdel Monaim, Y. E. Jad, A. El-Faham, B. G. de la Torre, F. Albericio. Bioorg. Med. Chem.26, 2788 (2018). Search in Google Scholar

[86] D. J. Atkinson, B. J. Naysmith, D. P. Furkert, M. A. Brimble. Beilstein J. Org. Chem.12, 2325 (2016). Search in Google Scholar

Published Online: 2019-01-29
Published in Print: 2019-02-25

©2019 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/