Accessible Requires Authentication Published by De Gruyter April 18, 2019

Phenolic betalain as antioxidants: meta means more

Letícia C. P. Gonçalves, Nathana B. Lopes, Felipe A. Augusto, Renan M. Pioli, Caroline O. Machado, Barbara C. Freitas-Dörr, Hugo B. Suffredini and Erick L. Bastos ORCID logo

Abstract

Betalains are phytochemicals of nutraceutical importance that emerged as potent antioxidants, preventing radical chain propagation and the deleterious health effects of oxidative stress. However, despite the wide application of betalains as color additives in products for human consumption, little is known about the relationship between their structure and antioxidant potential. Here we investigate the mechanism of antioxidant action of three regioisomeric phenolic betalains and show that the meta isomer has higher antiradical capacity than most natural betalains, anthocyanins and flavonoids. Structural and pH effects on redox and antiradical properties were investigated and the results are rationalized in light of quantum chemical calculations. Our results demonstrate that hydrogen atom transfer/proton-coupled electron transfer or sequential proton loss electron transfer mechanisms are plausible to explain the radical chain breaking properties of phenolic betalains in water. Furthermore, mesomeric effects are responsible for the stabilization of the resulting radical phenolic betalains. These findings are useful for the design of biocompatible antioxidants and for the development of novel additives for functional foods and cosmetics with high antioxidant potential.

Acknowledgements

We thank the São Paulo Research Foundation – FAPESP (ELB, 2014/22136-4 and 2016/21445-9; LCPG, 2007/59407-1; COM, 2015/24760-0), the Brazilian National Council for Scientific and Technological Development – CNPq (ELB, 303341/2016-5), and the Coordination for the Improvement of Higher Education Personnel – CAPES (NBL, 33002010191P0; RMP) for financial support. We thank Dr. Guilherme S. Buzzo for the fabrication of the BDD electrode.

  1. Author contributions: E.L.B. conceived the study; E.L.B., H.B.S., and L.C.P.G. designed the experiments; L.C.P.G., N.B.L., R.M.P., C.O.M., and B.F.–D. performed experimental work; E.L.B. and F.A.A. carried out theoretical calculations. E.L.B. and L.C.P.G. interpreted results and wrote the paper.

  2. Conflicts of interest: There are no conflicts to declare.

References

[1] R. Mittler. Trends Plant Sci.22, 11 (2017). Search in Google Scholar

[2] C. C. Winterbourn. Nat. Chem. Biol.4, 278 (2008). Search in Google Scholar

[3] H. Sies. Redox Biol.4, 180 (2015). Search in Google Scholar

[4] E. D. Cömert, V. Gökmen. Compr. Rev. Food Sci. Food Saf.16, 382 (2017). Search in Google Scholar

[5] A. M. Pisoschi, A. Pop. Eur. J. Med. Chem.97, 55 (2015). Search in Google Scholar

[6] R. H. Liu. J. Nutr.134, 3479S (2004). Search in Google Scholar

[7] R. H. Liu. Am. J. Clin. Nutr.78, 517S (2003). Search in Google Scholar

[8] R. L. Prior, G. Cao. HortScience35, 588 (2000). Search in Google Scholar

[9] I. Belhadj Slimen, T. Najar, M. Abderrabba. J. Agric. Food Chem.65, 675 (2017). Search in Google Scholar

[10] F. Gandía-Herrero, F. García-Carmona. Trends Plant Sci.18, 334 (2013). Search in Google Scholar

[11] F. H. Quina, E. L. Bastos. Ann. Braz. Acad. Sci.90, 681 (2018). Search in Google Scholar

[12] R. E. Wrolstad, C. A. Culver. Annu. Rev. Food Sci. Technol.3, 59 (2012). Search in Google Scholar

[13] T. Esatbeyoglu, A. E. Wagner, V. B. Schini-Kerth, G. Rimbach. Mol. Nutr. Food Res.59, 36 (2015). Search in Google Scholar

[14] A. Gliszczynska-Swinglo, H. Szymusiak, P. Malinowska. Food Addit. Contam. A23, 1079 (2006). Search in Google Scholar

[15] J. Kanner, S. Harel, R. Granit. J. Agric. Food Chem.49, 5178 (2001). Search in Google Scholar

[16] R. M. Martinez, D. T. Longhi-Balbinot, A. C. Zarpelon, L. Staurengo-Ferrari, M. M. Baracat, S. R. Georgetti, R. C. Sassonia, W. A. Verri, R. Casagrande. Arch. Pharm. Res.38, 494 (2015). Search in Google Scholar

[17] C. Winkler, B. Wirleitner, K. Schroecksn, H. Schennach, D. Fuchs. Am. J. Biochem. Biotechnol.1, 180 (2005). Search in Google Scholar

[18] N. A. Treat, F. J. Knorr, J. L. McHale. J. Phys. Chem. C120, 9122 (2016). Search in Google Scholar

[19] D. Zhang, S. M. Lanier, J. A. Downing, J. L. Avent, J. Lum, J. L. McHale. J. Photochem. Photobiol. A195, 72 (2008). Search in Google Scholar

[20] C. Y. Qin, A. E. Clark. Chem. Phys. Lett.438, 26 (2007). Search in Google Scholar

[21] M. V. Pavliuk, A. M. Cieslak, M. Abdellah, A. Budinska, S. Pullen, K. Sokolowski, D. L. A. Fernandes, J. Szlachetko, E. L. Bastos, S. Ott, L. Hammarstrom, T. Edvinsson, J. Lewinski, J. Sa. Sustain. Energy Fuels1, 69 (2017). Search in Google Scholar

[22] M. V. Pavliuk, A. B. Fernandes, M. Abdellah, D. L. A. Fernandes, C. O. Machado, I. Rocha, Y. Hattori, C. Paun, E. L. Bastos, J. Sa. Sci. Rep.7, 8670 (2017). Search in Google Scholar

[23] M. I. Khan. Compr. Rev. Food Sci. Food Safety15, 316 (2016). Search in Google Scholar

[24] A. Gliszczynska-Swiglo, J. Oszmianski. “Antioxidant and prooxidant activity of food components”, in Food Oxidants and Antioxidants: Chemical, Biological, and Functional Properties, G. Bartosz (Ed.), pp. 375–431. CRC Press, Boca Raton (2013). Search in Google Scholar

[25] F. Gandía-Herrero, J. Escribano, F. Garcia-Carmona. Crit. Rev. Food Sci.56, 937 (2016). Search in Google Scholar

[26] F. Gandía-Herrero, J. Escribano, F. Garcia-Carmona. J. Nat. Prod.75, 1030 (2012). Search in Google Scholar

[27] F. Gandía-Herrero, J. Escribano, F. Garcia-Carmona. Planta232, 449 (2010). Search in Google Scholar

[28] F. Gandía-Herrero, J. Escribano, F. Garcia-Carmona. J. Nat. Prod.72, 1142 (2009). Search in Google Scholar

[29] W. Schliemann, N. Kobayashi, D. Strack. Plant Physiol.119, 1217 (1999). Search in Google Scholar

[30] F. H. Bartoloni, L. C. P. Goncalves, A. C. B. Rodrigues, F. A. Dorr, E. Pinto, E. L. Bastos. Monatsh. Chem.144, 567 (2013). Search in Google Scholar

[31] M. Wendel, D. Szot, K. Starzak, D. Tuwalska, J. Gapinski, R. Naskrecki, D. Prukala, M. Sikorski, S. Wybraniec, G. Burdzinski. J. Lumin.167, 289 (2015). Search in Google Scholar

[32] S. Nizinski, M. Wendel, M. F. Rode, D. Prukala, M. Sikorski, S. Wybraniec, G. Burdzinski. RSC Adv.7, 6411 (2017). Search in Google Scholar

[33] M. Wendel, S. Nizinski, D. Tuwalska, K. Starzak, D. Szot, D. Prukala, M. Sikorski, S. Wybraniec, G. Burdzinski. PCCP17, 18152 (2015). Search in Google Scholar

[34] F. Gandía-Herrero, J. Escribano, F. Garcia-Carmona. Planta222, 586 (2005). Search in Google Scholar

[35] R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans. Free Radic. Biol. Med.26, 1231 (1999). Search in Google Scholar

[36] D. Huang, B. Ou, R. L. Prior. J. Agric. Food Chem.53, 1841 (2005). Search in Google Scholar

[37] R. L. Prior, X. Wu, K. Schaich. J. Agric. Food Chem.53, 4290 (2005). Search in Google Scholar

[38] A. Cano, M. B. Arnao. “ABTS/TEAC (2, 2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)/Trolox®-Equivalent Antioxidant Capacity) radical scavenging mixed-mode assay”, in Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications, pp. 117–139. John Wiley & Sons Ltd, Chichester (2018). Search in Google Scholar

[39] İ. Gülçin. Arch. Toxicol.86, 345 (2012). Search in Google Scholar

[40] X. Tian, K. M. Schaich. J. Agric. Food Chem.61, 5511 (2013). Search in Google Scholar

[41] N. J. Miller, C. A. Rice-Evans, M. J. Davies, V. Gopinathan, A. A. Milner. Clin. Sci.84, 407 (1993). Search in Google Scholar

[42] C. A. Rice-Evans, N. J. Miller, G. Paganga. Free Radic. Biol. Med.20, 933 (1996). Search in Google Scholar

[43] A. J. Stewart, W. Mullen, A. Crozier. Mol. Nutr. Food Res.49, 52 (2005). Search in Google Scholar

[44] P. Pietta. J. Nat. Prod.63, 1035 (2000). Search in Google Scholar

[45] A. M. Pisoschi, C. Cimpeanu, G. Predoi. Open Chem.13 (2015). Search in Google Scholar

[46] D. Dimić, D. Milenković, J. Dimitrić Marković, Z. Marković. PCCP19, 12970 (2017). Search in Google Scholar

[47] T. Nilsson. Lantbruk. Ann.36, 179 (1970). Search in Google Scholar

[48] L. C. Esteves, A. C. Pinheiro, R. M. Pioli, T. C. Penna, W. J. Baader, T. C. Correra, E. L. Bastos. Photochem. Photobiol.94, 853 (2018). Search in Google Scholar

[49] M. Leopoldini, T. Marino, N. Russo, M. Toscano. J. Phys. Chem. A108, 4916 (2004). Search in Google Scholar

[50] R. Apak. “Electron transfer-based antioxidant capacity assays and the cupric ion reducing antioxidant capacity (CUPRAC) assay”, in Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications, pp. 57–75. John Wiley & Sons Ltd, Chichester (2018). Search in Google Scholar

[51] M. Foti, G. Ruberto. J. Agric. Food Chem.49, 342 (2001). Search in Google Scholar

[52] Z. D. Petrović, J. Đorović, D. Simijonović, V. P. Petrović, Z. Marković. RSC Adv.5, 24094 (2015). Search in Google Scholar

[53] D. Huang, R. Tocmo. “Assays based on competitive measurement of the scavenging ability of reactive oxygen/nitrogen species”, in Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications, pp. 21–38. John Wiley & Sons Ltd, Chichester (2018). Search in Google Scholar

[54] Y. Zhao, D. G. Truhlar. Theor. Chem. Acc.120, 215 (2008). Search in Google Scholar

[55] T. H. Dunning. J. Chem. Phys.90, 1007 (1989). Search in Google Scholar

[56] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian’09, revision D.01. Gaussian, Inc., Wallingford CT (2009). Search in Google Scholar

[57] Z. Marković, J. Đorović, Z. D. Petrović, V. P. Petrović, D. Simijonović. J. Molec. Model.21, 293 (2015). Search in Google Scholar

[58] Z. Marković, J. Tošović, D. Milenković, S. Marković. Comput. Theor. Chem.1077, 11 (2016). Search in Google Scholar

[59] M. Szeląg, A. Urbaniak, A. R. Bluyssen Hans. Open Chem.13, 17 (2015). Search in Google Scholar

Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/pac-2019-0108).

Published Online: 2019-04-18
Published in Print: 2020-02-25

©2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/