Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 3, 2020

Modeling vapor-liquid-liquid-solid equilibrium for acetone-water-salt system

Kaj Thomsen ORCID logo, Martin Due Olsen and Lucas F.F. Corrêa

Abstract

A compilation of available experimental data for acetone-water mixtures with the reciprocal salt system Na+, K+ || Cl, SO4 2− is presented. Significant inconsistencies among experimental data are pointed out. New freezing point measurements are reported for the binary acetone-water system at 12 different compositions. UNIQUAC parameters are determined on the basis of the available data from literature. Modeling results are presented. Vapor-liquid, liquid-liquid, and solid-liquid equilibria together with thermal properties are reproduced well by the model using only 14 parameters. The major drawback of the model is that the calculated liquid-liquid equilibrium regions of systems with KCl and NaCl are larger than the experimentally determined regions. The model is valid in the temperature range from −16 to 100 °C.


Article note:

A collection of invited papers based on presentations at the 36th International Conference of Solution Chemistry (ICSC-36), held in Xining, China, 4-8 August 2019.



Corresponding author: Kaj Thomsen, Department of Chemical and Biochemical Engineering, CERE, Technical University of Denmark, Lyngby, Denmark, E-mail:

References

[1] Y. Lin, A. ten Kate, M. Mooijer, J. Delgado, P. L. Fosbøl, K. Thomsen. AIChE J. 56, 1334 (2010).Search in Google Scholar

[2] M. Iliuta, K. Thomsen, P. Rasmussen. Chem. Eng. Sci. 55, 2673 (2000).10.1016/S0009-2509(99)00534-5Search in Google Scholar

[3] P. Wang, A. Anderko, R. D. Young. Fluid Phase Equilib. 203, 141 (2002).10.1016/S0378-3812(02)00178-4Search in Google Scholar

[4] C.-C. Chen, Y. Song. AIChE J. 50, 1928 (2004).10.1002/aic.10151Search in Google Scholar

[5] A. A. Rashin, B. Honig. J. Phys. Chem. 89, 5588 (1985).10.1021/j100272a006Search in Google Scholar

[6] A. P.-S. Kamps. Ind. Eng. Chem. Res. 44, 201 (2005).10.1021/ie049543ySearch in Google Scholar

[7] K. Thomsen, P. Rasmussen. Chem. Eng. Sci. 54, 1787 (1999).10.1016/S0009-2509(99)00019-6Search in Google Scholar

[8] K. Thomsen, M. Iliuta, P. Rasmussen. Chem. Eng. Sci. 59, 3631 (2004).10.1016/j.ces.2004.05.024Search in Google Scholar

[9] K. Thomsen. Pure Appl. Chem. 77, 531 (2005).10.1351/pac200577030531Search in Google Scholar

[10] P. L. Fosbøl, K. Thomsen, E. H. Stenby. Ind. Eng. Chem. Res. 48, 4565 (2009).10.1021/ie801168eSearch in Google Scholar

[11] M. W. Arshad, N. von Solms, K. Thomsen. Int. J. Greenh. Gas Control 53, 401 (2016).10.1016/j.ijggc.2016.08.014Search in Google Scholar

[12] A. Gomis, J. Garcia-Cano, J. C. Asensi, V. Gomis. J. Chem. Eng. Data 63, 4107 (2018).10.1021/acs.jced.8b00550Search in Google Scholar

[13] A. B. Krizhanovskii, E. S. Nenno. Russ. J. Inorg. Chem. 16, 746 (1971).Search in Google Scholar

[14] J. Snell. J. Phys. Chem. 2, 457 (1898).10.1021/j150008a001Search in Google Scholar

[15] H. M. Lin, H. Kim, T. Guo, K. Chao. Fluid Phase Equilib. 13, 143 (1983).10.1016/0378-3812(83)80088-0Search in Google Scholar

[16] A. Chen, R. Luo. J. Chem. Eng. Chin. Univ. 3, 28 (1989).Search in Google Scholar

[17] S. Ohe. Vapor-Liquid Equilibrium Data – Salt Effect, Kodansha Ltd and Elsevier Science Publishers B. V. Tokyo, Amsterdam (1991).Search in Google Scholar

[18] W. Yan, M. Topphoff, C. Rose, J. Gmehling. Fluid Phase Equilib. 162, 97 (1999).10.1016/S0378-3812(99)00201-0Search in Google Scholar

[19] A. Johnson, W. Furter. Can. J. Chem. Eng. 38, 78 (1960).10.1002/cjce.5450380304Search in Google Scholar

[20] F. A. Abu Al-Rub, F. A. Banat, J. Simandl. Sep. Sci. Technol. 34, 3197 (1999).10.1081/SS-100100830Search in Google Scholar

[21] M. M. Olaya, A. Marcilla, M. D. Serrano, A. Botella, J. A. Reyes-Labarta. Ind. Eng. Chem. Res. 46, 7030 (2007).10.1021/ie0705610Search in Google Scholar

[22] A. T. Kan, G. Fu, M. B. Tomson. Ind. Eng. Chem. Res. 42, 2399 (2003).10.1021/ie020724eSearch in Google Scholar

[23] Y. P. Jimenez, M. E. Taboada, H. R. Galleguillos. Fluid Phase Equilib. 284, 114 (2009).10.1016/j.fluid.2009.06.017Search in Google Scholar

[24] K. Thomsen, P. Rasmussen, R. Gani. Chem. Eng. Sci. 51, 3675 (1996).10.1016/0009-2509(95)00418-1Search in Google Scholar

[25] DIPPR. The DIPPR Information and Data Evaluation, Manager for the Design Institute for Physical Properties (2018).Search in Google Scholar

[26] D. Ambrose, C. H. S. Sprake, R. Townsend. J. Chem. Thermodyn. 6, 693 (1974).10.1016/0021-9614(74)90119-0Search in Google Scholar

[27] K. Thomsen. Electrolyte Solutions: Thermodynamics, Crystallization, Separation methods, Technical University of Denmark (2009). https://doi.org/10.11581/dtu:00000073.Search in Google Scholar

[28] J. A. Huwaldt. Plot Digitizer. Sourceforge.net.Search in Google Scholar

[29] G. N. Bakhtyukova, Y. A. Demidova, V. N. Kir’yakov, I. P. Usyukin, V. M. Shleinikov. J. Appl. Chem. USSR 40, 592 (1967).Search in Google Scholar

[30] G. J. Wilson, D. W. Davidson. Can. J. Chem. 41, 264 (1963).10.1139/v63-041Search in Google Scholar

[31] A. A. Ennan, V. A. Lapshin. Zh. Fiz. Khim. 49, 2295 (1975).Search in Google Scholar

[32] W. Herz, M. Knoch. Z. Anorg. Chem. 41, 315 (1904).10.1002/zaac.19040410119Search in Google Scholar

[33] G. B. Frankforter, L. Cohen. J. Am. Chem. Soc. 36, 1103 (1914).10.1021/ja02183a005Search in Google Scholar

[34] A. B. Krizhanovskii, O. S. Koval’chuk, E. S. Nenno, K. A. Bondarenko, A. T. Purtova. Zh. Neorg. Khim. 25, 1662 (1980).Search in Google Scholar

[35] A. V. Krizhanovskii, E. S. Nenno. Zh. Neorg. Khim. 28, 773 (1983).Search in Google Scholar

[36] A. Marcilla, F. Ruiz, A. García. Fluid Phase Equilib. 112, 273 (1995).10.1016/0378-3812(95)02804-NSearch in Google Scholar

[37] M. Li, D. Constantinescu, L. Wang, A. Mohs, J. Gmehling. Ind. Eng. Chem. Res. 49, 4981 (2010).10.1021/ie100027cSearch in Google Scholar

[38] A. Barkan. Uch. Zap. Belorussk. Gos. Univ. Ser. Khim. 24, 102 (1955).Search in Google Scholar

[39] J.-T. Li, J.-K. Wang, Y.-L. Wang. J. Chem. Eng. Data 52, 1069 (2007).10.1021/je700017bSearch in Google Scholar

[40] K. A. Bondarenko, N. K. Dzyuba, A. V. Krizhanovskii, V. V. Kugai, S. S. Koval’chuk. Zh. Neorg Khim. 31, 1053 (1986).Search in Google Scholar

[41] H.-H. Emons, H.-U. Triebs, F. Winkler. Z. Anorg. Allg. Chem. 382, 1 (1971).10.1002/zaac.19713820102Search in Google Scholar

[42] A. B. Krizhanovskii, E. S. Nenno, R. M. Skripinchenko. Russ. J. Inorg. Chem. 17, 1322 (1972).Search in Google Scholar

[43] S. Lynn, A. L. Schiozer, W. L. Jaecksch, R. Cos, J. M. Prausnitz. Ind. Eng. Chem. Res. 35, 4236 (1996).10.1021/ie960094eSearch in Google Scholar

[44] A. G. Jones, J. Mydlarz. Chem. Eng. Res. Des. 67, 283 (1989).Search in Google Scholar

[45] J. J. Fox, A. J. H. Gauge. J. Chem. Soc. 97, 377 (1910).10.1039/CT9109700377Search in Google Scholar

[46] L. Weber. Z. Anorg. Allg. Chem. 181, 385 (1929).10.1002/zaac.19291810136Search in Google Scholar

[47] J. Mydlarz, A. G. Jones. J. Chem. Eng. Data 35, 214 (1990).10.1021/je00060a036Search in Google Scholar

[48] K. Jurkiewicz. Fluid Phase Equilib. 251, 24 (2007).10.1016/j.fluid.2006.10.019Search in Google Scholar

[49] S. Mosseri, Z. B. Alfassi. Chem. Eng. Sci. 40, 1695 (1985).10.1016/0009-2509(85)80030-0Search in Google Scholar

[50] S. S. Segizbaeva, U. F. Omarova, B. A. Beremzhanov. Khim. Khim. Tekhnol. 18, 154 (1975).Search in Google Scholar

[51] I. I. Goncharik, K. M. Aleksandrovich. Zh. Fiz. Khim. 39, 1217 (1994).Search in Google Scholar

[52] T. A. Al-Sahhaf, N. J. Jabbar. J. Chem. Eng. Data 38, 522 (1993).10.1021/je00012a010Search in Google Scholar

[53] A. S. Brunjes, M. J. P. Bogart. Ind. Eng. Chem. 35, 255 (1943).10.1021/ie50398a032Search in Google Scholar

[54] K. Kojima, K. Tochigi, H. Seki, K. Watase. Kagaku Kogaku 32, 149 (1968).10.1252/kakoronbunshu1953.32.149Search in Google Scholar

[55] Z. N. Kupriyanova, V. F. Belugin, G. B. Shakhova. Zh. Prikl. Khim. 46, 234 (1973).Search in Google Scholar

[56] B. A. Coomber, C. J. Wormald. J. Chem. Thermodyn. 8, 793 (1976).10.1016/0021-9614(76)90058-6Search in Google Scholar

[57] H. French. J. Chem. Thermodyn. 21, 801 (1989).10.1016/0021-9614(89)90026-8Search in Google Scholar

[58] Y. Lu, S. Zhen, J. Lu. Thermochim. Acta 221, 171 (1993).10.1016/0040-6031(93)85061-DSearch in Google Scholar

[59] Y. Lu, S. Zhen, J. Lu. Thermochim. Acta 210, 15 (1992).10.1016/0040-6031(92)80273-YSearch in Google Scholar

[60] P. L. Fosbøl, M. G. Pedersen, K. Thomsen. J. Chem. Eng. Data 56, 995 (2011).10.1021/je100994vSearch in Google Scholar

[61] P. L. Fosbøl, R. Neerup, M. W. Arshad, Z. Tecle, K. Thomsen. J. Chem. Eng. Data 56, 5088 (2011).10.1021/je200959mSearch in Google Scholar

[62] D. S. Abrams, J. M. Prausnitz. AIChE J. 21, 116 (1975).10.1002/aic.690210115Search in Google Scholar

[63] H.-J. Benkelberg, S. Hamm, P. Warneck. J. Atmos. Chem. 20, 17 (1995).10.1007/BF01099916Search in Google Scholar

Published Online: 2020-08-03
Published in Print: 2020-10-25

© 2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/