Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 25, 2021

A blueprint for green chemists: lessons from nature for sustainable synthesis

Julian G. West ORCID logo

Abstract

The design of new chemical reactions that are convenient, sustainable, and innovative is a preeminent concern for modern synthetic chemistry. While the use of earth abundant element catalysts remains underdeveloped by chemists, nature has developed a cornucopia of powerful transformation using only base metals, demonstrating their viability for sustainable method development. Here we show how study of nature’s approach to disparate chemical problems, from alkene desaturation to photodetection in bacteria, can inspire and enable new approaches to difficult synthetic chemistry problems past, present, and future.


Corresponding author: Julian G. West, Department of Chemistry, Rice University, 6100 Main St MS 602, Houston, TX, 77005, USA, e-mail:

Funding source: Rice University

Funding source: Cancer Prevention and Research Institute of Texas

Award Identifier / Grant number: RR190025

Acknowledgments

J.G.W. is a CPRIT Scholar in Cancer Research. J.G.W. gratefully acknowledges the contributions of David Huang, Dylan J. Abrams, T. Aaron Bedell, and Erik Sorensen (Princeton University) on the development of the dehydrogenation, dehydroformylation, and uranyl fluorination reactions discussed in this article and Radha Bam, Alex S. Pollatos, and Austin Moser (Rice University) for their efforts developing our vitamin B12 photocatalysis program. Receipt of the 2019 IUPAC-Zhejiang NHU Award for Advancements in Green Chemistry is a recognition for these outstanding coworkers in addition to J.G.W. The globe illustration in Fig. 6 is from BioRender.

  1. Research funding: We acknowledge financial support from CPRIT (RR190025) and startup funds from Rice University.

References

[1] United Nations, Transforming Our World: The 2030 Agenda for Sustainable Development, United Nations, New York, NY (2015).Search in Google Scholar

[2] P. T. Anastas, J. C. Warner. Green Chemistry: Theory and Practice, Oxford University Press, Oxford, NY (2000).Search in Google Scholar

[3] T. Newhouse, P. S. Baran, R. W. Hoffmann. Chem. Soc. Rev.38, 3010 (2009).10.1039/b821200gSearch in Google Scholar PubMed PubMed Central

[4] N. I. Bishop. Annu. Rev. Biochem.40, 197 (1971).10.1146/annurev.bi.40.070171.001213Search in Google Scholar PubMed

[5] Govindjee, D. Shevela, L. O. Björn. Photosynth. Res.133, 5 (2017).10.1007/s11120-016-0333-zSearch in Google Scholar PubMed

[6] J. P. McEvoy, G. W. Brudvig. Chem. Rev.106, 4455 (2006).10.1021/cr0204294Search in Google Scholar PubMed

[7] D. J. Vinyard, G. M. Ananyev, G. Charles Dismukes. Annu. Rev. Biochem.82, 577 (2013).10.1146/annurev-biochem-070511-100425Search in Google Scholar PubMed

[8] M. Askerka, G. W. Brudvig, V. S. Batista. Acc. Chem. Res.50, 41 (2017).10.1021/acs.accounts.6b00405Search in Google Scholar PubMed

[9] B. Kok, B. Forbush, M. McGloin. Photochem. Photobiol.11, 457 (1970).10.1111/j.1751-1097.1970.tb06017.xSearch in Google Scholar PubMed

[10] M. D. Tzirakis, I. N. Lykakis, M. Orfanopoulos. Chem. Soc. Rev.38, 2609 (2009).10.1039/b812100cSearch in Google Scholar PubMed

[11] V. D. Waele, O. Poizat, M. Fagnoni, A. Bagno, D. Ravelli. ACS Catal.6, 7174 (2016).10.1021/acscatal.6b01984Search in Google Scholar

[12] N. I. Gumerova, A. Rompel. Nat. Rev. Chem.2, 1 (2018).10.1038/s41570-018-0007-9Search in Google Scholar

[13] D. Ravelli, M. Fagnoni, T. Fukuyama, T. Nishikawa, I. Ryu. ACS Catal.8, 701 (2018).10.1021/acscatal.7b03354Search in Google Scholar

[14] L. Capaldo, D. Ravelli. Eur. J. Org. Chem.15, 2056 (2017).10.1002/ejoc.201601485Search in Google Scholar PubMed PubMed Central

[15] L. Capaldo, L. L. Quadri, D. Ravelli. Green Chem.22, 3376 (2020).10.1039/D0GC01035ASearch in Google Scholar

[16] S. Esposti, D. Dondi, M. Fagnoni, A. Albini. Angew. Chem. Int. Ed.46, 2531 (2007).10.1002/anie.200604820Search in Google Scholar PubMed

[17] G. Laudadio, Y. Deng, K. van der Wal, D. Ravelli, M. Nuño, M. Fagnoni, D. Guthrie, Y. Sun, T. Noël. Science369, 92 (2020).10.1126/science.abb4688Search in Google Scholar PubMed

[18] S. Protti, D. Ravelli, M. Fagnoni, A. Albini, Chem. Commun. 7351 (2009).10.1039/b917732aSearch in Google Scholar PubMed

[19] M. Okada, T. Fukuyama, K. Yamada, I. Ryu, D. Ravelli, M. Fagnoni. Chem. Sci.5, 2893 (2014).10.1039/C4SC01072HSearch in Google Scholar

[20] I. Ryu, A. Tani, T. Fukuyama, D. Ravelli, S. Montanaro, M. Fagnoni. Org. Lett.15, 2554 (2013).10.1021/ol401061vSearch in Google Scholar PubMed

[21] S. D. Halperin, H. Fan, S. Chang, R. E. Martin, R. Britton. Angew. Chem. Int. Ed.53, 4690 (2014).10.1002/anie.201400420Search in Google Scholar PubMed

[22] I. B. Perry, T. F. Brewer, P. J. Sarver, D. M. Schultz, D. A. DiRocco, D. W. C. MacMillan. Nature560, 70 (2018).10.1038/s41586-018-0366-xSearch in Google Scholar PubMed PubMed Central

[23] P. J. Sarver, V. Bacauanu, D. M. Schultz, D. A. DiRocco, Y. Lam, E. C. Sherer, D. W. C. MacMillan. Nat. Chem.12, 459 (2020).10.1038/s41557-020-0436-1Search in Google Scholar

[24] Y. Nakano, K. F. Biegasiewicz, T. K. Hyster. Curr. Opin. Chem. Biol.49, 16 (2019).10.1016/j.cbpa.2018.09.001Search in Google Scholar

[25] D. M. Upp, J. C. Lewis. Curr. Opin. Chem. Biol.37, 48 (2017).10.1016/j.cbpa.2016.12.027Search in Google Scholar

[26] J. C. Lewis, P. S. Coelho, F. H. Arnold. Chem. Soc. Rev.40, 2003 (2011).10.1039/C0CS00067ASearch in Google Scholar

[27] P. H. Buist. Nat. Prod. Rep.21, 249 (2004).10.1039/b302094kSearch in Google Scholar

[28] M. T. Nakamura, T. Y. Nara. Annu. Rev. Nutr.24, 345 (2004).10.1146/annurev.nutr.24.121803.063211Search in Google Scholar

[29] B. Behrouzian, P. H. Buist. Prostaglandins Leukot. Essent. Fatty Acids68, 107 (2003).10.1016/S0952-3278(02)00260-0Search in Google Scholar

[30] B. Behrouzian, L. Fauconnot, F. Daligault, C. Nugier‐Chauvin, H. Patin, P. H. Buist. Eur. J. Biochem.268, 3545 (2001).10.1046/j.1432-1327.2001.02258.xSearch in Google Scholar PubMed

[31] M. A. Bigi, S. A. Reed, M. C. White. Nat. Chem.3, 216 (2011).10.1038/nchem.967Search in Google Scholar PubMed

[32] R. Breslow, P. Scholl. J. Am. Chem. Soc.93, 2331 (1971).10.1021/ja00738a049Search in Google Scholar

[33] R. Breslow, S. Baldwin, T. Flechtner, P. Kalicky, S. Liu, W. Washburn. J. Am. Chem. Soc.95, 3251 (1973).10.1021/ja00791a031Search in Google Scholar PubMed

[34] R. Breslow. Acc. Chem. Res.28, 146 (1995).10.1021/ar00051a008Search in Google Scholar

[35] A. A. Gridnev, S. D. Ittel. Chem. Rev.101, 3611 (2001).10.1021/cr9901236Search in Google Scholar PubMed

[36] G. N. Schrauzer. Acc. Chem. Res.1, 97 (1968).10.1021/ar50004a001Search in Google Scholar

[37] M. Jost, J. Fernández-Zapata, M. C. Polanco, J. M. Ortiz-Guerrero, P. Y. T. Chen, G. Kang, S. Padmanabhan, M. Elías-Arnanz, C. L. Drennan. Nature526, 536 (2015).10.1038/nature14950Search in Google Scholar PubMed PubMed Central

[38] M. Jost, J. H. Simpson, C. L. Drennan. Biochemistry54, 3231 (2015).10.1021/acs.biochem.5b00416Search in Google Scholar PubMed PubMed Central

[39] S. W. M. Crossley, C. Obradors, R. M. Martinez, R. A. Shenvi. Chem. Rev.116, 8912 (2016).10.1021/acs.chemrev.6b00334Search in Google Scholar PubMed PubMed Central

[40] D. C. Eisenberg, J. R. Norton. Isr. J. Chem.31, 55 (1991).10.1002/ijch.199100006Search in Google Scholar

[41] G. Li, M. E. Pulling, D. P. Estes, J. R. Norton. J. Am. Chem. Soc.134, 14662 (2014).10.1021/ja306037wSearch in Google Scholar PubMed

[42] J. L. Dempsey, B. C. Brunschwig, J. R. Winkler, H. B. Gray, Acc. Chem. Res.42, 1995 (2009) https://doi.org/10.1021/ar900253e.Search in Google Scholar

[43] A. Fihri, V. Artero, M. Razavet, C. Baffert, W. Leibl, M. Fontecave. Angew. Chem. Int. Ed.47, 564 (2008).10.1002/anie.200702953Search in Google Scholar PubMed

[44] C. Baffert, V. Artero, M. Fontecave. Inorg. Chem.46, 1817 (2007).10.1021/ic061625mSearch in Google Scholar PubMed

[45] A. Bakac, J. H. Espenson. J. Am. Chem. Soc.106, 5197 (1984).10.1021/ja00330a027Search in Google Scholar

[46] T.-H. Chao, J. H. Espenson. J. Am. Chem. Soc.100, 129 (1978).10.1021/ja00469a022Search in Google Scholar

[47] P. Connolly, J. H. Espenson. Inorg. Chem.25, 2684 (1986).10.1021/ic00236a006Search in Google Scholar

[48] J. L. Dempsey, J. R. Winkler, H. B. Gray. J. Am. Chem. Soc.132, 16774 (2010).10.1021/ja109351hSearch in Google Scholar PubMed

[49] C. N. Valdez, J. L. Dempsey, B. S. Brunschwig, J. R. Winkler, H. B. Gray. Proc. Natl. Acad. Sci.109, 15589 (2012).10.1073/pnas.1118329109Search in Google Scholar PubMed PubMed Central

[50] X. Hu, B. S. Brunschwig, J. C. Peters. J. Am. Chem. Soc.129, 8988 (2007).10.1021/ja067876bSearch in Google Scholar PubMed

[51] X. Hu, B. M. Cossairt, B. S. Brunschwig, N. S. Lewis, J. C. Peters. Chem. Commun.1, 4723 (2005).10.1039/b509188hSearch in Google Scholar PubMed

[52] D. C. Lacy, G. M. Roberts, J. C. Peters. J. Am. Chem. Soc.137, 4860 (2015).10.1021/jacs.5b01838Search in Google Scholar PubMed

[53] T. Lazarides, T. McCormick, P. Du, G. Luo, B. Lindley, R. Eisenberg. J. Am. Chem. Soc.131, 9192 (2009).10.1021/ja903044nSearch in Google Scholar PubMed

[54] P.-A. Jacques, V. Artero, J. Pécaut, M. Fontecave. Proc. Natl. Acad. Sci.106, 20627 (2009).10.1073/pnas.0907775106Search in Google Scholar PubMed PubMed Central

[55] D. P. Estes, D. C. Grills, J. R. Norton. J. Am. Chem. Soc.136, 17362 (2014).10.1021/ja508200gSearch in Google Scholar PubMed

[56] J. G. West, E. J. Sorensen. Isr. J. Chem.57, 259 (2017).10.1002/ijch.201600115Search in Google Scholar

[57] J. G. West, D. Huang, E. J. Sorensen. Nat. Commun.6, 10093 (2015).10.1038/ncomms10093Search in Google Scholar PubMed PubMed Central

[58] G. I. Lepesheva, M. R. Waterman. Biochim. Biophys. Acta Gen. Subj.1770, 467 (2007).10.1016/j.bbagen.2006.07.018Search in Google Scholar PubMed PubMed Central

[59] K. Sen, J. C. Hackett. J. Am. Chem. Soc.132, 10293 (2010).10.1021/ja906192bSearch in Google Scholar PubMed

[60] D. Y. Curtin, M. J. Hurwitz. J. Am. Chem. Soc.74, 5381 (1952).10.1021/ja01141a048Search in Google Scholar

[61] D. J. Abrams, J. G. West, E. J. Sorensen. Chem. Sci.8, 1454 (2017).10.1039/C6SC03838GSearch in Google Scholar PubMed PubMed Central

[62] S. Kusumoto, T. Tatsuki, K. Nozaki. Angew. Chem. Int. Ed.54, 8458 (2015).10.1002/anie.201503620Search in Google Scholar PubMed

[63] S. K. Murphy, J.-W. Park, F. A. Cruz, V. M. Dong. Science347, 56 (2015).10.1126/science.1261232Search in Google Scholar PubMed PubMed Central

[64] R. Franke, D. Selent, A. Borner. Appl. Hydroformylation Chem. Rev.112, 5675 (2012).Search in Google Scholar

[65] H. Cao, Y. Kuang, X. Shi, K. L. Wong, B. B. Tan, J. M. C. Kwan, X. Liu, J. Wu. Nat. Commun.11, 1956 (2020).10.1038/s41467-020-15878-6Search in Google Scholar PubMed PubMed Central

[66] R. F. Renneke, M. Pasquali, C. L. Hill. J. Am. Chem. Soc.112, 6585 (1990).10.1021/ja00174a020Search in Google Scholar

[67] T. Yamase, N. Takabayashi, M. Kaji, J. Chem. Soc., Dalton Trans. 793 (1984).10.1039/dt9840000793Search in Google Scholar

[68] T. Yamase, T. Usami, J. Chem. Soc., Dalton Trans. 183 (1988).10.1039/DT9880000183Search in Google Scholar

[69] D. R. Lide. Handb. Chem. Phys.53, 2616 (2003).Search in Google Scholar

[70] H. D. Burrows, T. J. Kemp. Chem. Soc. Rev.3, 139 (1974).10.1039/cs9740300139Search in Google Scholar

[71] C. K. Jørgensen, R. Reisfeld, M. J. Clarke, J. B. Goodenough, P. Hemmerich, J. A. Ibers, J. B. Neilands, D. Reinen, R. Weiss, R. J. P. Williams. Top. Inorg. Phys. Chem.50, 121 (1982).Search in Google Scholar

[72] L. Yaffe. Can. J. Res.27b, 638 (1949).10.1139/cjr49b-063Search in Google Scholar

[73] M. W. Hubbell. The Fundamentals of Nuclear Power Generation: Questions and Answers, Author House, Bloomington (2011).Search in Google Scholar

[74] F. Babudri, G. M. Farinola, F. Naso, R. Ragni. International Atomic Energy Agency, Critical Review of Uranium Resources and Production Capability to 2020, International Atomic Energy Agency TECDOC Series, Vienna, (1998).Search in Google Scholar

[75] Environmental Health and SafetyPrinceton University. Uranium and throium use (2015), https://ehs.princeton.edu/laboratory-research/radiation-safety/radioactive-materials/uranium-thorium-use.Search in Google Scholar

[76] W.-D. Wang, A. Bakac, J. H. Espensen. Inorg. Chem.34, 6034 (1995).10.1021/ic00128a014Search in Google Scholar

[77] Y. Mao, A. Bakac. J. Phys. Chem.100, 4219 (1996).10.1021/jp9529376Search in Google Scholar

[78] W. K. Hagmann. J. Med. Chem.51, 4359 (2008).10.1021/jm800219fSearch in Google Scholar PubMed

[79] K. Müller, C. Faeh, F. Diederich. Science317, 1881 (2007).10.1126/science.1131943Search in Google Scholar

[80] J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu. Chem. Rev.114, 2432 (2014).10.1021/cr4002879Search in Google Scholar

[81] D. Cartwright. in Organofluorine Chemistry, p. 237, Springer US, Boston, MA (1994).10.1007/978-1-4899-1202-2_11Search in Google Scholar

[82] T. Fujiwara, D. O’Hagan. J. Fluor. Chem.167, 16 (2014).10.1016/j.jfluchem.2014.06.014Search in Google Scholar

[83] G. Theodoridis. Adv. Fluor. Sci.2, 121 (2006).10.1016/S1872-0358(06)02004-5Search in Google Scholar

[84] F. Babudri, G. M. Farinola, F. Naso, R. Ragni, Chem. Commun. 1003 (2007).10.1039/B611336BSearch in Google Scholar PubMed

[85] R. Berger, G. Resnati, P. Metrangolo, E. Weber, J. Hulliger, J. M. de Siqueira, D. Sparrowe, M. Shkunov, S. J. Coles, P. N. Horton, M. B. Hursthouse, R. Fröhlich. Chem. Soc. Rev.40, 3496 (2011).10.1039/c0cs00221fSearch in Google Scholar PubMed

[86] T. Hiyama, H. Yamamoto. in Organofluorine Compounds, p. 183, Springer, Berlin, Heidelberg (2000).10.1007/978-3-662-04164-2_6Search in Google Scholar

[87] S. D. Halperin, D. Kwon, M. Holmes, E. L. Regalado, L. C. Campeau, D. A. Dirocco, R. Britton. Org. Lett.17, 5200 (2015).10.1021/acs.orglett.5b02532Search in Google Scholar PubMed

[88] J. G. West, T. A. Bedell, E. J. Sorensen. Angew. Chem. Int. Ed.55, 8923 (2016).10.1002/anie.201603149Search in Google Scholar PubMed PubMed Central

[89] L. Wu, X. Cao, X. Chen, W. Fang, M. Dolg. Angew. Chem. Int. Ed.57, 11812 (2018).10.1002/anie.201806554Search in Google Scholar

[90] L. Capaldo, D. Merli, M. Fagnoni, D. Ravelli. ACS Catal.9, 3054 (2019).10.1021/acscatal.9b00287Search in Google Scholar

[91] L. N. Mander, J. V. Turner. Tetrahedron Lett.22, 4149 (1981).10.1016/S0040-4039(01)82090-6Search in Google Scholar

[92] T. Kobayashi, H. Ohmiya, H. Yorimitsu, K. Oshima. J. Am. Chem. Soc.130, 11276 (2008).10.1021/ja804277xSearch in Google Scholar PubMed

[93] A. C. Bissember, A. Levina, G. C. Fu. J. Am. Chem. Soc.134, 14232 (2012),.10.1021/ja306323xSearch in Google Scholar PubMed PubMed Central

[94] J. T. Jarrett, D. M. Hoover, M. L. Ludwig, R. G. Matthews. Biochemistry37, 12649 (1998).10.1021/bi9808565Search in Google Scholar PubMed

[95] J. T. Jarrett, M. Amaratunga, C. L. Drennan, J. D. Scholten, R. H. Sands, M. L. Ludwig, R. G. Matthews. Biochemistry35, 2464 (1996).10.1021/bi952389mSearch in Google Scholar PubMed

[96] M. Koutmos, S. Datta, K. A. Pattridge, J. L. Smith, R. G. Matthews. Proc. Natl. Acad. Sci.106, 18527 (2009).10.1073/pnas.0906132106Search in Google Scholar PubMed PubMed Central

[97] G. N. Schrauzer, E. Deutsch. J. Am. Chem. Soc.91, 3341 (1969).10.1021/ja01040a041Search in Google Scholar PubMed

[98] M. Giedyk, K. Goliszewska, D. Gryko. Chem. Soc. Rev.44, 3391 (2015).10.1039/C5CS00165JSearch in Google Scholar

[99] R. Bam, A. S. Pollatos, A. J. Moser, J. G. West, Chem. Sci.12, 1736 (2021).10.1039/D0SC05925KSearch in Google Scholar

[100] S. W. M. Crossley, F. Barabe, R. A. Shenvi. J. Am. Chem. Soc.136, 16788 (2014).10.1021/ja5105602Search in Google Scholar PubMed PubMed Central

Published Online: 2021-03-25
Published in Print: 2021-05-26

© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/