Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 1, 2021

Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling

  • Jake McClements , Luciana C. Gomes , Joshua Spall , Fabien Saubade , Devine Akhidime , Marloes Peeters , Filipe J. Mergulhão and Kathryn A. Whitehead EMAIL logo


The development of self-cleaning biomimetic surfaces has the potential to be of great benefit to human health, in addition to reducing the economic burden on industries worldwide. Consequently, this study developed a biomimetic wax surface using a moulding technique which emulated the topography of the self-cleaning Gladiolus hybridus (Gladioli) leaf. A comparison of topographies was performed for unmodified wax surfaces (control), biomimetic wax surfaces, and Gladioli leaves using optical profilometry and scanning electron microscopy. The results demonstrated that the biomimetic wax surface and Gladioli leaf had extremely similar surface roughness parameters, but the water contact angle of the Gladioli leaf was significantly higher than the replicated biomimetic surface. The self-cleaning properties of the biomimetic and control surfaces were compared by measuring their propensity to repel Escherichia coli and Listeria monocytogenes attachment, adhesion, and retention in mono- and co-culture conditions. When the bacterial assays were carried out in monoculture, the biomimetic surfaces retained fewer bacteria than the control surfaces. However, when using co-cultures of the bacterial species, only following the retention assays were the bacterial numbers reduced on the biomimetic surfaces. The results demonstrate that such surfaces may be effective in reducing biofouling if used in the appropriate medical, marine, and industrial scenarios. This study provides valuable insight into the anti-fouling physical and chemical control mechanisms found in plants, which are particularly appealing for engineering purposes.

Corresponding author: Kathryn A. Whitehead, Department of Life Sciences, Microbiology at Interfaces, Manchester Metropolitan University, Chester Street, Manchester M15GD, UK, e-mail:

Article note: A collection of invited papers from members of the IUPAC Polymer Division Celebrating a Centenary of Macromolecules.

Award Identifier / Grant number: 952471

Funding source: Portuguese Foundation for Science and Technology (FCT)

Award Identifier / Grant number: CEECIND/01700/2017

  1. Research funding: This work was financially supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 952471. L. C. Gomes acknowledges the Portuguese Foundation for Science and Technology (FCT) for the financial support of her work contract through the Scientific Employment Stimulus – Individual Call – [CEECIND/01700/2017].


[1] S.-H. Hsu, K. Woan, W. Sigmund. Mater. Sci. Eng. R Rep. 72, 189 (2011), in Google Scholar

[2] W. Barthlott, M. Mail, C. Neinhuis. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20160191 (2016), in Google Scholar

[3] W. Barthlott, M. Mail, B. Bhushan, K. Koch. Nano-Micro Lett. 9, 23 (2017), in Google Scholar

[4] F. H. Rajab, C. M. Liauw, P. S. Benson, L. Li, K. A. Whitehead. Colloids Surf. B Biointerfaces 160, 688 (2017), in Google Scholar

[5] F. H. Rajab, C. M. Liauw, P. S. Benson, L. Li, K. A. Whitehead. Food Bioprod. Process. 109, 29 (2018), in Google Scholar

[6] A. I. K. S. Rupp, P. Gruber. Biomimetics 4, 75 (2019), in Google Scholar

[7] J. Li, Y. Zhou, W. Wang, F. Du, L. Ren. J. Alloys Compd. 819, 152968 (2020), in Google Scholar

[8] G. Wang, Z. Guo, W. Liu. J. Bionic Eng. 11, 325 (2014), in Google Scholar

[9] W. Barthlott, C. Neinhuis. Planta 202, 1 (1997), in Google Scholar

[10] A. Peter, A. H. A. Lutey, S. Faas, L. Romoli, V. Onuseit, T. Graf. Opt. Laser. Technol. 123, 105954 (2020), in Google Scholar

[11] A. H. A. Lutey, L. Gemini, L. Romoli, G. Lazzini, F. Fuso, M. Faucon, R. Kling. Sci. Rep. 8, 10112 (2018), in Google Scholar PubMed PubMed Central

[12] F. Geyer, M. D’Acunzi, A. Sharifi-Aghili, A. Saal, N. Gao, A. Kaltbeitzel, T. F. Sloot, R. Berger, H. J. Butt, D. Vollmer. Sci. Adv. 6, eaaw9727 (2020), in Google Scholar PubMed PubMed Central

[13] Q. Xu, W. Zhang, C. Dong, T. S. Sreeprasad, Z. Xia. J. R. Soc. Interface 13, 20160300 (2016), in Google Scholar PubMed PubMed Central

[14] B. Aryal, G. Neuner. Oecologia 162, 1 (2010), in Google Scholar PubMed

[15] B. J. Klayman, P. A. Volden, P. S. Stewart, A. K. Camper. Environ. Sci. Technol. 43, 2105 (2009), in Google Scholar PubMed

[16] A. Z. de Grandi, U. M. Pinto, M. T. Destro. World J. Microbiol. Biotechnol. 34, 61 (2018), in Google Scholar PubMed

[17] H. L. Røder, P. K. Raghupathi, J. Herschend, A. Brejnrod, S. Knøchel, S. J. Sørensen, M. Burmølle. Food Microbiol. 51, 18 (2015), in Google Scholar PubMed

[18] J. M. R. Moreira, L. C. Gomes, K. A. Whitehead, S. Lynch, L. A. Tetlow, F. J. Mergulhão. Food Bioprod. Process. 104, 1 (2017), in Google Scholar

[19] S. K. Filoche, S. A. Anderson, C. H. Sissons. Oral Microbiol. Immunol. 19, 322 (2004), in Google Scholar PubMed

[20] L. C. Gomes, J.-C. Piard, R. Briandet, F. J. Mergulhão. LWT Food Sci. Technol. 85, 309 (2017), in Google Scholar

[21] K. A. Whitehead, C. Liauw, J. S. Wilson-Nieuwenhuis, A. J. Slate, T. Deisenroth, A. Preuss, J. Verran. AIMS Bioeng. 7, 165 (2020), in Google Scholar

[22] A. Skovager, K. Whitehead, D. Wickens, J. Verran, H. Ingmer, N. Arneborg. Colloids Surf. B Biointerfaces 109, 190 (2013), in Google Scholar PubMed

[23] K. A. Whitehead, L. A. Smith, J. Verran. Int. J. Food Microbiol. 141, S125 (2010), in Google Scholar PubMed

[24] C. O. Gill, N. Penney. Appl. Environ. Microbiol. 33, 1284 (1977), in Google Scholar PubMed PubMed Central

[25] Y. Briers, J. Klumpp, M. Schuppler, M. J. Loessner. J. Bacteriol. 193, 4284 (2011), in Google Scholar PubMed PubMed Central

[26] F. Saubade, L. I. Pilkington, C. M. Liauw, L. C. Gomes, J. McClements, M. Peeters, M. El Mohtadi, F. Mergulhão, K. A. Whitehead. Langmuir, Accepted, in Google Scholar PubMed

[27] K. Faust, J. Raes. Nat. Rev. Microbiol. 10, 538 (2012), in Google Scholar PubMed

[28] L. Benitez, A. Correa, D. Daroit, A. Brandelli. Curr. Microbiol. 62, 1017 (2011), in Google Scholar PubMed

[29] H. E. Daneshvar Alavi, L. Truelstrup Hansen. Biofouling 29, 1253 (2013), in Google Scholar PubMed

[30] M. Kostaki, N. Chorianopoulos, E. Braxou, G.-J. Nychas, E. Giaouris. Appl. Environ. Microbiol. 78, 2586 (2012), in Google Scholar PubMed PubMed Central

[31] A. Bhattacharjee, M. Khan, M. Kleiman, A. I. Hochbaum. ACS Appl. Mater. Interfaces 9, 18531 (2017), in Google Scholar PubMed

[32] V. S. Saji. Colloids Surfaces A Physicochem. Eng. Asp. 602, 125132 (2020), in Google Scholar

[33] M. A. AlMaadeed, S. Labidi, I. Krupa, M. Ouederni. Arab. J. Chem. 8, 388 (2015), in Google Scholar

[34] L. Shen, J. Severn, C. W. M. Bastiaansen. Polymer 153, 354 (2018), in Google Scholar

[35] C. I. Idumah, C. M. Obele, E. O. Emmanuel, A. Hassan. Surf. Interfaces 21, 100734 (2020), in Google Scholar PubMed PubMed Central

[36] X. Hao, W. H. Wang, Z. Yang, L. Yue, H. Sun, H. Wang, Z. Guo, F. Cheng, S. Chen. Chem. Eng. J. 356, 130 (2019), in Google Scholar

[37] G. M. Intelligence. Global anti-microbial peptides market report 2030: based on peptides type, based on products, based on application & by region with COVID-19 impact | Forecast Period 2017–2030 (2020), [Online]. Available: in Google Scholar

[38] M. Kazemzadeh-Narbat, H. Cheng, R. Chabok, M. M. Alvarez, C. De La Fuente-Nunez, K. S. Phillips, A. Khademhosseini. Crit. Rev. Biotechnol. 41, 94 (2021), in Google Scholar PubMed

Published Online: 2021-07-01
Published in Print: 2021-10-26

© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit:

Downloaded on 29.3.2023 from
Scroll Up Arrow