Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 4, 2021

Comparative assessment of fluorine, sodium, and lithium distributions in snow cover in Siberia

  • Natalia I. Ianchenko EMAIL logo , Anna V. Talovskaya and Alexey A. Zanin

Abstract

Based on field studies of the snow cover and systematization and analysis of scientific data and technical literature data, the distributions of fluorine, sodium, and lithium, as elements included in the raw materials used for aluminum production, in the snow cover in areas proximal to Siberian aluminum smelters were considered. The results showed that the changes in concentrations of fluorine, sodium, and lithium in the snow cover near various plants have the same dispersion pattern, which can be described by an exponential relationship. Exponential relationships of diminishing concentration with distance from the emission source had high correlation coefficients. From the examples established by these relationships, an assumption was made that the behavior of these aerosols in the atmosphere is determined by the general physical and chemical properties, irrespective of the technologies and natural climatic regions of the plant locations. It is suggested that deposition of aerosols from industrial aluminium production can be achieved at a minimum distance from the plants or within the plant area through particle enlargement by various technological methods in aluminium production or by changing the atmospheric scattering capacity.


Article note:

Snow cover, atmospheric precipitation, aerosols: chemistry and climate: reports of the 3rd Baikal international scientific conference endorsed by IUPAC (March 23–27, 2020).



Corresponding author: Natalia I. Ianchenko, Irkutsk National Research Technical University, Irkutsk, Russia, e-mail:

Acknowledgments

The authors are grateful to Prof. A. N. Baranov (Irkutsk National Research Technical University) and to Prof. E. G. Yazikov and PhD Osipova N. A. (National Research Tomsk Polytechnic University). The experimental procedures for Krasnoyarsk aluminum plant were carried out at Tomsk Polytechnic University within the framework of Tomsk Polytechnic University Competitiveness Enhancement Program Grant in the Group of Top Level World Research and Academic Institutions.

References

[1] V. N. Vasilenko, I. M. Nazarov, S. D. Fridman. Snow pollution monitoring, p. 182, Hydrometeoizdat, Leningrad (1985). (in Russian).Search in Google Scholar

[2] V. P. Shevchenko, S. N. Vorobyev, I. V. Krickov, A. G. Boev, A. G. Lim, A. N. Novigatsky, D. P. Starodymova, O. S. Pokrovsky. Atmosphere 11, 1184 (2020), https://doi.org/10.3390/atmos11111184.Search in Google Scholar

[3] D. Vlasov, J. Vasil’chuk, N. Kosheleva, N. Kasimov. Atmosphere 11, 907 (2020), https://doi.org/10.3390/atmos11090907.Search in Google Scholar

[4] M. Gaberšek, M. Gosar. Environ. Geochem. Health 43, 2583 (2021), https://doi.org/10.1007/s10653-020-00609-z.Search in Google Scholar

[5] B. I. Zelberg, L. V. Ragozin, A. G. Barantsev, O. I. Yasevich, V. G. Grigoryev, A. N. Baranov. Steel Worker’s Guide. Aluminum and Aluminum Alloys Production, p. 764, IRSTU, Itkutsk (2015). (in Russian).Search in Google Scholar

[6] N. I. Ianchenko, O. G. Larionova. Tsvetnye Met. 9–10, 60 (2001).Search in Google Scholar

[7] N. P. Kotsupalo, A. D. Ryabtsev, V. V. Boldyrev. Chem. Technol. 1, 36 (2011). (in Russian).Search in Google Scholar

[8] The State of Air Pollution in Cities on the Territory of Russia for 2014. Yearbook, p. 288. Voeikov Main Geophysical Observatory, Saint Petersburg (2015). (in Russian).Search in Google Scholar

[9] RD 52.04.186-89 Atmospheric Pollution Control Guide, p. 531. USSR State Committee for Hydrometeorology, USSR Ministry of Health, Moscow (1991). (in Russian).Search in Google Scholar

[10] L. M. Filimonova, A. V. Parshin, V. A. Bychinskii. Russ. Meteorol. Hydrol. 40, 691 (2015), https://doi.org/10.3103/s1068373915100076.Search in Google Scholar

[11] Pollution of Soils of the Irkutsk Region with Toxicants of Industrial Origin: Yearbook (2000–2007), p. 101. Irkutsk Department for Hydrometeorology and Environmental Monitoring, Irkutsk (2008). (in Russian).Search in Google Scholar

[12] N. I. Ianchenko, A. N. Baranov, V. A. Ershov, E. P. Chebykin, E. N. Vodneva, E. V. Timkina. Syst. Methods Technol. 4, 164 (2013). (in Russian).Search in Google Scholar

[13] N. D. Davydova. Adv. Mod. Nat. Sci. 5, 186 (2014). (in Russian).Search in Google Scholar

[14] N. D. Davydova, T. I. Znamenskaya, D. A. Lopatkin. Contemp. Probl. Ecol. 6, 228 (2013), https://doi.org/10.1134/s1995425513020029.Search in Google Scholar

[15] L. A. Nikolaev, V. F. Turchaninova. Nat. Sci. Human. 6, 58 (2010). (in Russian).Search in Google Scholar

[16] N. D. Davydova, T. I. Znamenskaya. Geogr. Nat. Resour. 1, 55 (2016). (in Russian).Search in Google Scholar

[17] M. I. Vasilevich, R. S. Vasilevich, D. N. Gabov, B. M. Kondratenok. Geoecology. Engineering Geol. Hydrogeol. Geocryol. 6, 94 (2019). https://doi.org/10.31857/s0869-78092019694-105 (in Russian).Search in Google Scholar

[18] V. R. Kelly, G. M. Lovett, K. C. Weathers, S. E. Findlay, D. L. Strayer, D. J. Burns, G. E. Likens. Environ. Sci. Technol. 42, 410 (2007).10.1021/es071391lSearch in Google Scholar PubMed

[19] V. R. Kelly, S. E. Findlay, S. K. Hamilton, G. M. Lovett, K. C. Weathers. Water Air Soil Pollut. 230, 13 (2019), https://doi.org/10.1007/s11270-018-4060-2.Search in Google Scholar

[20] K. R. Kolesara, C. N. Mattsona, P. K. Peterson, N. W. Maya, R. K. Prendergast, K. A. Pratt. Atmos. Environ. 177, 195 (2018), https://doi.org/10.1016/j.atmosenv.2018.01.008.Search in Google Scholar

[21] M. M. Frey, S. J. Norris, I. M. Brooks, P. S. Anderson, K. Nishimura, X. Yang, A. E. Jones, M. G. Nerentorp Mastromonaco, D. H. Jones, E. W. Wolff. Atmos. Chem. Phys. 20, 2549 (2019).10.5194/acp-20-2549-2020Search in Google Scholar

[22] M. Legrand, S. Preunkert, E. Wolff, R. Weller, B. Jourdain, D. Wagenbach. Atmos. Chem. Phys. 17, 14039 (2017), https://doi.org/10.5194/acp-17-14039-2017.Search in Google Scholar

[23] E. I. Kotova, V. B. Korobov, V. P. Shevchenko. Mod. Probl. Sci. Educ. 6, 631 (2012). (in Russian).Search in Google Scholar

[24] Y. N. Chizhova, N. I. Ianchenko, N. A. Budantseva. Arctic Antarct. 2, 1 (2016). (in Russian).Search in Google Scholar

[25] N. I. Ianchenko. Chem. Chem. Technol. 325, 23 (2014). (in Russian).Search in Google Scholar

[26] O. V. Ignatenko, M. V. Senchenko, N. A. Meshcherova. Syst. Methods Technol. 3, 138 (2012). (in Russian).Search in Google Scholar

[27] P. F. Svistov, A. I. Polishchuk, N. A. Pershina, T. M. Pavlova. Annual Data on the Chemical Composition of Atmospheric Precipitation for 2006–2010 (Data Review), p. 100, Voeikov Main Geophysical Observatory, Saint Petersburg (2013). (in Russian).Search in Google Scholar

[28] D. Cheng. J. Atmos. Chem. 75, 1 (2018), https://doi.org/10.1007/s10874-017-9359-7.Search in Google Scholar

[29] O. S. Ignatyev, O. A. Bragazina. Russ. J. Non-Ferrous Metals 2, 13 (1997). (in Russian).Search in Google Scholar

[30] A. N. Baranov, A. G. Vakhromeev, N. I. Ianchenko. Obtaining Lithium Products from Siberian Brines for the Greening of Aluminum Production, p. 125, IRSTU, Itkutsk (2004). (in Russian).Search in Google Scholar

[31] K. Y. Kondratyev. Opt. Atmos. Ocean 15, 301 (2002). (in Russian).Search in Google Scholar

Published Online: 2021-08-04
Published in Print: 2022-03-28

© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Downloaded on 21.2.2024 from https://www.degruyter.com/document/doi/10.1515/pac-2021-0319/html
Scroll to top button