Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 23, 2021

Pressure assisted sintering of Al2O3–Y2O3 glass microspheres: sintering conditions, grain size, and mechanical properties of sintered ceramics

  • Anna Prnová ORCID logo EMAIL logo , Jana Valúchová , Monika Michálková , Beáta Pecušová , Milan Parchovianský , Peter Švančárek , Ondrej Hanzel , Václav Pouchlý and Dušan Galusek ORCID logo


Glass microspheres with yttria-alumina eutectic composition (76.8 mol% Al2O3 and 23.2 mol% Y2O3) were prepared by sol-gel Pechini method and flame synthesis with or without subsequent milling. Prepared amorphous powders were studied by X-ray powder diffraction (XRD), particle size analysis (PSA), scanning electron microscopy (SEM) and differential thermal analysis (DTA). Hot pressing (HP), rapid hot pressing (RHP) and spark plasma sintering (SPS) were used to sinter amorphous precursor powders at 1600 °C without holding time (0 min). The preparation process including milling step resulted in amorphous powders with narrower particle size distribution and smaller particle size. All applied pressure assisted sintering techniques resulted in dense bulk samples with fine grained microstructure consisting of irregular α-Al2O3 and Y3Al5O12 (YAG) grains. Milling was beneficial in terms of final microstructure refinement and mechanical properties of sintered materials. A material with the Vickers hardness of HV = (17.1 ± 0.3) GPa and indentation fracture resistance of (4.2 ± 0.2) MPa.m1/2 was prepared from the powder milled for 12 h.

Article note:

A collection of invited papers based on presentations at the 14th International Conference on Solid State Chemistry (SSC 2021) held in Trencin, Slovakia, June 13–17, 2021.

Corresponding author: Anna Prnová, VILA – Joined Glass Centre of the IIC SAS, TnUAD, and FChPT STU, FunGlass, Študentská 2, SK-911 50 Trenčín, Slovakia, e-mail:

Award Identifier / Grant number: 17-0049, 19-0010

Award Identifier / Grant number: 1/0527/18, 2/0026/17


This paper is a part of dissemination activities of project FunGlass. This project has received funding from the European Union’s Horizon 2020, research and innovation programme under grant agreement No 739566. The financial support of this work by the projects APVV-17-0049, APVV-19-0010, VEGA 2/0026/17 and VEGA 1/0527/18 is gratefully acknowledged. We also thank the support from the project Centre for Functional and Surface Functionalized Glass (CEGLASS), ITMS code is 313011R453, operational program Research and innovation, co-funded from European Regional Development Fund.

  1. Research funding: This work was funded by Agentúra na Podporu Výskumu a Vývoja (17-0049, 19-0010) and Vedecká Grantová Agentúra MŠVVaŠ SR a SAV (1/0527/18, 2/0026/17).


[1] F. J. Paneto, J. L. Pereira, J. O. Lima, E. J. Jesus, L. A. Silva, E. Sousa Lima, R. F. Cabral, C. Santos. Int. J. Refract. Metals Hard Mater. 48, 365 (2015), in Google Scholar

[2] T. Isobe, M. Omori, S. Uchida, T. Sato, T. Hirai. Sci. Technol. Adv. Mater. 3, 239 (2002), in Google Scholar

[3] P. B. Oliete, M. J. López-Robledo, J. I. Peña, J. Silva. Ceram. Int. 43, 16270 (2017), in Google Scholar

[4] F. Niu, D. Wu, G. Ma, J. Wang, J. Zhuang, Z. Jin. Procedia CIRP 42, 91 (2016), in Google Scholar

[5] J. Z. Yu, J. Zhang, H. J. Su, K. Song, L. Liu, H. Z. Fu. J. Inorg. Mater. 27, 843 (2012), in Google Scholar

[6] H. Su, J. Zhang, Ch. Cui, L. Liu, H. Fu. Mater. Sci. Eng. A 479, 380 (2008), in Google Scholar

[7] Y. Murayama, S. Hanada, Y. Waku. Mater. Trans. 44, 1690 (2003).10.2320/matertrans.44.1690Search in Google Scholar

[8] D. Liu, Y. Gao, J. Liu, F. Liu, K. Li, H. Su, Y. Wang, L. An. Scripta Mater. 114, 108 (2016), in Google Scholar

[9] A. Yoshikawa, K. Hasegawa, J. H. Lee, S. D. Durbin, B. M. Epelbaum, D. H. Yoon, T. Fukuda, Y. Waku. J. Cryst. Growth 218, 67 (2000), in Google Scholar

[10] K. Song, J. Zhang, L. Liu. Scripta Mater. 92, 39 (2014), in Google Scholar

[11] C. Song, S. Wang, J. Liu, S. Zhai. Materials 11, 534 (2018), in Google Scholar

[12] K. Song, J. Zhang, X. J. Jia, H. J. Su, L. Liu, H. Z. Fu. J. Cryst. Growth 345, 51 (2012), in Google Scholar

[13] C. B. Finch, J. D. Holder, H. L. Yakel. J. Cryst. Growth 37, 245 (1977), in Google Scholar

[14] J. H. Lee, A. Yoshikawa, S. D. Durbin, D. Ho Yoon, T. Fukuda, Y. Waku. J. Cryst. Growth 222, 791 (2001), in Google Scholar

[15] M. C. Mesa, S. Serrano-Zabaleta, P. B. Oliete, A. Larrea. J. Eur. Ceram. Soc. 34, 2071 (2014), in Google Scholar

[16] K. Yang, J. Rong, J. Feng, Y. Zhuang, S. Tao, C. Ding. J. Eur. Ceram. Soc. 36, 4261 (2016), in Google Scholar

[17] A. Prnová, D. Galusek, M. Hnatko, J. Kozánková, I. Vávra. Ceramics 55, 208 (2011).Search in Google Scholar

[18] M. P. Pechini. Method of preparing lead and alkaline-earth titanates and niobates and coating method using the same to form a capacitor. U. S. Pat. No. 3 330 697 (1967).Search in Google Scholar

[19] A. Prnová, J. Valúchová, M. Parchovianský, W. Wisniewski, P. Švančárek, R. Klement, Ľ. Hric, E. Bruneel, D. Galusek. J. Eur. Ceram. Soc. 40, 852 (2020), in Google Scholar

[20] B. Yao, H. Su, J. Zhang, Q. Ren, W. Ma, L. Liu, H. Fu. Mater. Des. 92, 213 (2016), in Google Scholar

[21] A. Prnová, J. Valúchová, Ž. Dohnalová, O. Hanzel, R. Klement, E. Bruneel, D. Galusek. in FunGlass School 2019/Part 1 Book of Abstracts Čertov, pp. 41–42, Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Trenčín, Slovakia (2019).Search in Google Scholar

[22] G. R. Anstis, P. Chantikul, D. B. Marshall, B. R. Lawn. J. Am. Ceram. Soc. 64, 533 (1981), in Google Scholar

[23] A. Prnová, A. Plško, J. Valúchová, P. Švančárek, R. Klement, M. Michálková, D. Galusek. J. Therm. Anal. Calorim. 133, 227 (2018), in Google Scholar

Published Online: 2021-11-23
Published in Print: 2022-02-23

© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit:

Downloaded on 2.4.2023 from
Scroll to top button