Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter January 21, 2022

Progress of albumin-polymer conjugates as efficient drug carriers

Radhika Raveendran, You Dan Xu, Nidhi Joshi and Martina H. Stenzel


Albumin is a protein that has garnered wide attention in nanoparticle-based drug delivery of cancer therapeutics due to its natural abundance and unique cancer-targeting ability. The propensity of albumin to naturally accumulate in tumours, further augmented by the incorporation of targeting ligands, has made the field of albumin-polymer conjugate development a much pursued one. Polymerization techniques such as RAFT and ATRP have paved the path to incorporate various polymers in the design of albumin-polymer hybrids, indicating the advancement of the field since the first instance of PEGylated albumin in 1977. The synergistic combination of albumin and polymer endows manifold features to these macromolecular hybrids to evolve as next generation therapeutics. The current review is successive to our previously published review on drug delivery vehicles based on albumin-polymer conjugates and aims to provide an update on the progress of albumin-polymer conjugates. This review also highlights the alternative of exploring albumin-polymer conjugates formed via supramolecular, non-covalent interactions. Albumin-based supramolecular polymer systems provide a versatile platform for functionalization, thereby, holding great potential in enhancing cytotoxicity and controlled delivery of therapeutic agents.

Article note:

A special collection of invited papers by recipients of the 2021 IUPAC Distinguished Women in Chemistry and Chemical Engineering Awards.

Corresponding author: Martina H. Stenzel, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia, e-mail:


[1] G. J. Quinlan, G. S. Martin, T. W. Evans. Hepatology 41, 1211 (2005).10.1002/hep.20720Search in Google Scholar

[2] M. Garcovich, M. A. Zocco, A. Gasbarrini. Blood Transfus 7, 268 (2009), in Google Scholar

[3] M. T. Larsen, M. Kuhlmann, M. L. Hvam, K. A. Howard. Mol. Cell. Ther. 4, 3 (2016), in Google Scholar

[4] F. Kratz. J. Contr. Release 132, 171 (2008), in Google Scholar

[5] D. Gupta, C. G. Lis. Nutr. J. 9, 69 (2010), in Google Scholar

[6] H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori. J. Contr. Release 65, 271 (2000).10.1016/S0168-3659(99)00248-5Search in Google Scholar

[7] K. Greish. J. Drug Target 15, 457 (2007), in Google Scholar

[8] J. E. Schnitzer, W. W. Carley, G. E. Palade. Proc. Natl. Acad. Sci. U.S.A. 85, 6773 (1988).10.1073/pnas.85.18.6773Search in Google Scholar

[9] N. Ghinea, A. Fixman, D. Alexandru, D. Popov, M. Hasu, L. Ghitescu, M. Eskenasy, M. Simionescu, N. Simionescu. J. Cell Biol. 107, 231 (1988).10.1083/jcb.107.1.231Search in Google Scholar

[10] J. E. Schnitzer, P. Oh. J. Biol. Chem. 269, 6072 (1994).10.1016/S0021-9258(17)37571-3Search in Google Scholar

[11] K. Komiya, T. Nakamura, C. Nakashima, K. Takahashi, H. Umeguchi, N. Watanabe, A. Sato, Y. Takeda, S. Kimura, N. S. Aragane. Onco. Targets. Ther. 9, 6663 (2016), in Google Scholar

[12] A. Zhu, P. Yuan, F. Du, R. Hong, X. Ding, X. Shi, Y. Fan, J. Wang, Y. Luo, F. Ma, P. Zhang, Q. Li, B. Xu. Onco Targets. Ther. 7, 76628 (2016), in Google Scholar

[13] G. P. Nagaraju, R. Dontula, B. F. El-Rayes, S. S. Lakka. Carcinogenesis 35, 967 (2014), in Google Scholar

[14] N. Said, H. F. Frierson, M. Sanchez-Carbayo, R. A. Brekken, D. Theodorescu. J. Clin. Invest. 123, 751 (2013), in Google Scholar

[15] O. L. Podhajcer, L. Benedetti, M. R. Girotti, F. Prada, E. Salvatierra, A. S. Llera. Cancer Metastasis Rev. 27, 523 (2008), in Google Scholar

[16] H. Sage, C. Johnson, P. Bornstein. J. Biol. Chem. 259, 3993 (1984), in Google Scholar

[17] E. Miele, G. P. Spinelli, E. Miele, F. Tomao, S. Tomao. Int. J. Nanomed. 4, 99 (2009), in Google Scholar

[18] M. Purcell, J. F. Neault, H. A. Tajmir-Riahi. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1478, 61 (2000), in Google Scholar

[19] K. Paál, J. Müller, L. Hegedûs. Eur. J. Biochem. 268, 2187 (2001), in Google Scholar

[20] A. Spada, J. Emami, J. A. Tuszynski, A. Lavasanifar. Mol. Pharm. 18, 1862 (2021), in Google Scholar

[21] A. Parodi, J. Miao, S. M. Soond, M. Rudzińska, A. A. Zamyatnin. Biomolecules 9 (2019), in Google Scholar

[22] B. Zhang, S. Wan, X. Peng, M. Zhao, S. Li, Y. Pu, B. He. J. Mater. Chem. B 8, 3939 (2020), in Google Scholar

[23] E. Karami, M. Behdani, F. Kazemi-Lomedasht. J. Drug Deliv. Sci. Technol. 55, 101471 (2020), in Google Scholar

[24] J. Yu, J. Zhang, J. Jin, W. Jiang. J. Mater. Chem. B 9, 8424 (2021), doi: in Google Scholar

[25] A. A. A. Smith, K. Zuwala, O. Pilgram, K. S. Johansen, M. Tolstrup, F. Dagnæs-Hansen, A. N. Zelikin. ACS Macro Lett. 5, 1089 (2016), in Google Scholar

[26] Y. Jiang, H. Lu, A. Dag, G. Hart-Smith, M. H. Stenzel. J. Mater. Chem. B 4, 2017 (2016), in Google Scholar

[27] A. Dag, Y. Jiang, K. J. A. Karim, G. Hart-Smith, W. Scarano, M. H. Stenzel. Macromol. Rapid Commun. 36, 890 (2015), in Google Scholar

[28] A. Abuchowski, T. Van Es, N. C. Palczuk, F. F. Davis. J. Biol. Chem. 252, 3578 (1977), in Google Scholar

[29] Y. Jiang, M. Stenzel. Macromol. Biosci. 16, 791 (2016), in Google Scholar

[30] K. Eisele, R. A. Gropeanu, C. M. Zehendner, A. Rouhanipour, A. Ramanathan, G. Mihov, K. Koynov, C. R. W. Kuhlmann, S. G. Vasudevan, H. J. Luhmann, T. Weil. Biomaterials 31, 8789 (2010), in Google Scholar

[31] X. Chen, M. Wang, Y. Hu, T. Gong, Z.-R. Zhang, R. Yu, Y. Fu. J. Mater. Chem. B 8, 2139 (2020), in Google Scholar

[32] M. Gharbavi, H. Danafar, A. Sharafi. J. Biomed. Mater. Res. 108, 1688 (2020), in Google Scholar

[33] Y. Jiang, H. Lu, F. Chen, M. Callari, M. Pourgholami, D. Morris, M. Stenzel. Biomacromolecules 17, 808 (2016), in Google Scholar

[34] S. Hafner, M. Raabe, Y. Wu, T. Wang, Z. Zuo, V. Rasche, T. Syrovets, T. Weil, T. Simmet. Adv. Ther. 2, 1900084 (2019), in Google Scholar

[35] Y. Xu, L. Tang, Y. Liu, C. Qian, P. Chen, Y. Xin, H. Liu, Y. Qu. Colloids Surf. B Biointerfaces 201, 111642 (2021), in Google Scholar

[36] J. Mariam, S. Sivakami, P. M. Dongre. Drug Deliv. 23, 2668 (2016), in Google Scholar

[37] H. Hyun, J. Park, K. Willis, J. E. Park, L. T. Lyle, W. Lee, Y. Yeo. Biomaterials 180, 206 (2018), in Google Scholar

[38] Y. Xu, L. Tang, P. Chen, M. Chen, M. Zheng, F. Shi, Y. Wang. AAPS PharmSciTech. 22, 1 (2021), in Google Scholar

[39] R. M. Lieser, D. Yur, M. O. Sullivan, W. Chen. Bioconjugate Chem. 31, 2272 (2020), in Google Scholar

[40] L. Xu, S. L. Kuan, T. Weil. Angew. Chem. Int. Ed. 60, 13757 (2021), in Google Scholar

[41] Z. Liu, X. Chen. Chem. Soc. Rev. 45, 1432 (2016), in Google Scholar

[42] Z. Liu, C. Dong, X. Wang, H. Wang, W. Li, J. Tan, J. Chang. ACS Appl. Mater. Interfaces 6, 2393 (2014), in Google Scholar

[43] J. Liu, V. Bulmus, D. L. Herlambang, C. Barner‐Kowollik, M. H. Stenzel, T. P. Davis. Angew. Chem. Int. Ed. 46, 3099 (2007).10.1002/anie.200604922Search in Google Scholar PubMed

[44] N. Vanparijs, S. Maji, B. Louage, L. Voorhaar, D. Laplace, Q. Zhang, Y. Shi, W. E. Hennink, R. Hoogenboom, B. G. De Geest. Polym. Chem. 6, 5602 (2015).10.1039/C4PY01224KSearch in Google Scholar

[45] X. Huang, M. Li, D. C. Green, D. S. Williams, A. J. Patil, S. Mann. Nat. Commun. 4, 1 (2013), in Google Scholar

[46] B. Le Droumaguet, K. Velonia. Angew. Chem. 120, 6359 (2008).10.1002/ange.200801007Search in Google Scholar

[47] K. L. Heredia, D. Bontempo, T. Ly, J. T. Byers, S. Halstenberg, H. D. Maynard. J. Am. Chem. Soc. 127, 16955 (2005).10.1021/ja054482wSearch in Google Scholar PubMed

[48] R. Duncan, M. J. Vicent. Adv. Drug Deliv. Rev. 65, 60 (2013), in Google Scholar

[49] J. T. Sockolosky, F. C. Szoka. Adv. Drug Deliv. Rev. 91, 109 (2015), in Google Scholar

[50] W. Mier, J. Hoffend, S. Krämer, J. Schuhmacher, W. E. Hull, M. Eisenhut, U. Haberkorn. Bioconjugate Chem. 16, 237 (2005), in Google Scholar

[51] G. A. Even, M. A. Green. Int. J. Radiat. Appl. Instrument. 16, 319 (1989), doi: in Google Scholar

[52] Y. S. Chang, J. M. Jeong, Y. S. Lee, H. W. Kim, G. B. Rai, S. J. Lee, D. S. Lee, J. K. Chung, M. C. Lee. Bioconjugate Chem. 16, 1329 (2005), in Google Scholar

[53] S. Y. Wu, J. W. Kuo, T. K. Chang, R. S. Liu, R. C. Lee, S. J. Wang, W. J. Lin, H. E. Wang. Nucl. Med. Biol. 39, 1026 (2012), in Google Scholar

[54] A. M. Mansour, J. Drevs, N. Esser, F. M. Hamada, O. A. Badary, C. Unger, I. Fichtner, F. Kratz. Cancer Res. 63, 4062 (2003).Search in Google Scholar

[55] K. Thibaudeau, R. Léger, X. Huang, M. Robitaille, O. Quraishi, C. Soucy, N. Bousquet-Gagnon, P. Van Wyk, V. Paradis, J. P. Castaigne, D. Bridon. Bioconjugate Chem. 16, 1000 (2005), in Google Scholar

[56] J. G. Mehtala, C. Kulczar, M. Lavan, G. Knipp, A. Wei. Bioconjugate Chem. 26, 941 (2015).10.1021/acs.bioconjchem.5b00143Search in Google Scholar PubMed PubMed Central

[57] A. Wall, K. Nicholls, M. B. Caspersen, S. Skrivergaard, K. A. Howard, K. Karu, V. Chudasama, J. R. Baker. Org. Biomol. Chem. 17, 7870 (2019), in Google Scholar

[58] J. Liu, V. Bulmus, C. Barner-Kowollik, M. H. Stenzel, T. P. Davis. Macromol. Rapid Commun. 28 (2007), in Google Scholar

[59] Z. Li, Y. Jiang, K. Wust, M. Callari, M. H. Stenzel. Aust. J. Chem. 73, 1034 (2020), in Google Scholar

[60] Y. Jiang, M. Liang, D. Svejkar, G. Hart-Smith, H. Lu, W. Scarano, M. H. Stenzel. Chem. Commun. 50, 6394 (2014), in Google Scholar

[61] Y. Jiang, H. Lu, Y. Khine, A. Dag, M. Stenzel. Biomacromolecules 15, 4195 (2014), in Google Scholar

[62] K. Taguchi, H. Lu, Y. Jiang, T. T. Hung, M. H. Stenzel. J. Mater. Chem. B 6, 6278 (2018), in Google Scholar

[63] Y. Jiang, H. Lu, Y. Y. Khine, A. Dag, M. H. Stenzel. Biomacromolecules 15, 4195 (2014), in Google Scholar

[64] Y. Jiang, S. Wong, F. Chen, T. Chang, H. Lu, M. H. Stenzel. Bioconjugate Chem. 28, 979 (2017), in Google Scholar

[65] D. Sleep. Expert Opin. Drug Deliv. 12, 793 (2015), in Google Scholar

[66] S. JevsÌŒevar, M. Kunstelj, V. G. Porekar. Biotechnol. J. 5, 113 (2010), in Google Scholar

[67] F. Biedermann, U. Rauwald, J. M. Zayed, O. A. Scherman. Chem. Sci. 2, 279 (2011), in Google Scholar

[68] S. Lee, C. Lee, B. Kim, L. Q. Thao, E. S. Lee, J. O. Kim, K. T. Oh, H. G. Choi, Y. S. Youn. Colloids Surf. B Biointerfaces 147, 281 (2016), in Google Scholar

[69] H. Yuan, C. Xu, Y. Zhao, B. Yu, G. Cheng, F. J. Xu. Adv. Funct. Mater. 26, 2855 (2016), in Google Scholar

[70] G. Han, J. T. Wang, X. Ji, L. Liu, H. Zhao. Bioconjugate Chem. 28, 636 (2017), in Google Scholar

[71] M. Dockal, D. C. Carter, F. Rüker. J. Biol. Chem. 274, 29303 (1999), in Google Scholar

[72] S. Al-Harthi, J. I. Lachowicz, M. E. Nowakowski, M. Jaremko, Ł. Jaremko. J. Inorg. Biochem. 198, 110716 (2019), in Google Scholar

[73] S. Evoli, D. L. Mobley, R. Guzzi, B. Rizzuti. Phys. Chem. Chem. Phys. 18, 32358 (2016), in Google Scholar

[74] H. Rimac, C. Dufour, Ž. Debeljak, B. Zorc, M. Bojić. Molecules 22 (2017), in Google Scholar

[75] P. Ascenzi, A. di Masi, G. Fanali, M. Fasano. Cell Death Dis. 1, 15025 (2015), in Google Scholar

[76] S. Curry. Drug Metabol. Pharmacokinet. 24, 342 (2009).10.2133/dmpk.24.342Search in Google Scholar PubMed

[77] A. Zorzi, S. Linciano, A. Angelini. Medchemcomm 10, 1068 (2019), in Google Scholar

[78] J. Lau, O. Jacobson, G. Niu, K.-S. Lin, F. Bénard, X. Chen. Bioconjugate Chem. 30, 487 (2019), in Google Scholar

[79] H. Liu, K. D. Moynihan, Y. Zheng, G. L. Szeto, A. V. Li, B. Huang, D. S. Van Egeren, C. Park, D. J. Irvine. Nature 507, 519 (2014), in Google Scholar

[80] T. Peters. in All About Albumin: Biochemistry, Genetics and Medical Applications, Academic Press, San Diego (1995).Search in Google Scholar

[81] C. E. Callmann, C. L. M. Leguyader, S. T. Burton, M. P. Thompson, R. Hennis, C. Barback, N. M. Henriksen, W. C. Chan, M. J. Jaremko, J. Yang, A. Garcia, M. D. Burkart, M. K. Gilson, J. D. Momper, P. A. Bertin, N. C. Gianneschi. J. Am. Chem. Soc. 141, 11765 (2019), in Google Scholar

[82] M. Abdallah, O. O. Müllertz, I. K. Styles, A. Mörsdorf, J. F. Quinn, M. R. Whittaker, N. L. Trevaskis. J. Contr. Release 327, 117 (2020), in Google Scholar

[83] L. Bekale, D. Agudelo, H. A. Tajmir-Riahi. Colloids Surf. B Biointerfaces 130, 141 (2015), in Google Scholar

[84] A. Asadi, A. A. Saboury, A. A. Moosavi-Movahedi, A. Divsalar, M. N. Sarbolouki. Int. J. Biol. Macromol. 43, 262 (2008), in Google Scholar

[85] A. Munasinghe, A. Mathavan, A. Mathavan, P. Lin, C. M. Colina. J. Phys. Chem. B 123, 5196 (2019), in Google Scholar

[86] Y. D. Xu, R. Y. Lai, E. Procházková, M. H. Stenzel. ACS Macro Lett. 10, 819 (2021), in Google Scholar

[87] J. De Vrieze, B. Louage, K. Deswarte, Z. Zhong, R. De Coen, S. Van Herck, L. Nuhn, C. Kaas Frich, A. N. Zelikin, S. Lienenklaus, N. N. Sanders, B. N. Lambrecht, S. A. David, B. G. De Geest. Angew. Chem. Int. Ed. 58, 15390 (2019), in Google Scholar

[88] C. K. Frich, F. Krüger, R. Walther, C. Domar, A. H. F. Andersen, A. Tvilum, F. Dagnæs-Hansen, P. W. Denton, M. Tolstrup, S. R. Paludan, J. Münch, A. N. Zelikin. J. Contr. Release 294, 298 (2019), in Google Scholar

Published Online: 2022-01-21

© 2022 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: