Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter January 21, 2022

Progress of albumin-polymer conjugates as efficient drug carriers

Radhika Raveendran, You Dan Xu, Nidhi Joshi and Martina H. Stenzel

Abstract

Albumin is a protein that has garnered wide attention in nanoparticle-based drug delivery of cancer therapeutics due to its natural abundance and unique cancer-targeting ability. The propensity of albumin to naturally accumulate in tumours, further augmented by the incorporation of targeting ligands, has made the field of albumin-polymer conjugate development a much pursued one. Polymerization techniques such as RAFT and ATRP have paved the path to incorporate various polymers in the design of albumin-polymer hybrids, indicating the advancement of the field since the first instance of PEGylated albumin in 1977. The synergistic combination of albumin and polymer endows manifold features to these macromolecular hybrids to evolve as next generation therapeutics. The current review is successive to our previously published review on drug delivery vehicles based on albumin-polymer conjugates and aims to provide an update on the progress of albumin-polymer conjugates. This review also highlights the alternative of exploring albumin-polymer conjugates formed via supramolecular, non-covalent interactions. Albumin-based supramolecular polymer systems provide a versatile platform for functionalization, thereby, holding great potential in enhancing cytotoxicity and controlled delivery of therapeutic agents.


Article note:

A special collection of invited papers by recipients of the 2021 IUPAC Distinguished Women in Chemistry and Chemical Engineering Awards.



Corresponding author: Martina H. Stenzel, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia, e-mail:

References

[1] G. J. Quinlan, G. S. Martin, T. W. Evans. Hepatology 41, 1211 (2005).10.1002/hep.20720Search in Google Scholar

[2] M. Garcovich, M. A. Zocco, A. Gasbarrini. Blood Transfus 7, 268 (2009), https://doi.org/10.2450/2008.0080-08.Search in Google Scholar

[3] M. T. Larsen, M. Kuhlmann, M. L. Hvam, K. A. Howard. Mol. Cell. Ther. 4, 3 (2016), https://doi.org/10.1186/s40591-016-0048-8.Search in Google Scholar

[4] F. Kratz. J. Contr. Release 132, 171 (2008), https://doi.org/10.1016/j.jconrel.2008.05.010.Search in Google Scholar

[5] D. Gupta, C. G. Lis. Nutr. J. 9, 69 (2010), https://doi.org/10.1186/1475-2891-9-69.Search in Google Scholar

[6] H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori. J. Contr. Release 65, 271 (2000).10.1016/S0168-3659(99)00248-5Search in Google Scholar

[7] K. Greish. J. Drug Target 15, 457 (2007), https://doi.org/10.1080/10611860701539584.Search in Google Scholar

[8] J. E. Schnitzer, W. W. Carley, G. E. Palade. Proc. Natl. Acad. Sci. U.S.A. 85, 6773 (1988).10.1073/pnas.85.18.6773Search in Google Scholar

[9] N. Ghinea, A. Fixman, D. Alexandru, D. Popov, M. Hasu, L. Ghitescu, M. Eskenasy, M. Simionescu, N. Simionescu. J. Cell Biol. 107, 231 (1988).10.1083/jcb.107.1.231Search in Google Scholar

[10] J. E. Schnitzer, P. Oh. J. Biol. Chem. 269, 6072 (1994).10.1016/S0021-9258(17)37571-3Search in Google Scholar

[11] K. Komiya, T. Nakamura, C. Nakashima, K. Takahashi, H. Umeguchi, N. Watanabe, A. Sato, Y. Takeda, S. Kimura, N. S. Aragane. Onco. Targets. Ther. 9, 6663 (2016), https://doi.org/10.2147/OTT.S114492.Search in Google Scholar

[12] A. Zhu, P. Yuan, F. Du, R. Hong, X. Ding, X. Shi, Y. Fan, J. Wang, Y. Luo, F. Ma, P. Zhang, Q. Li, B. Xu. Onco Targets. Ther. 7, 76628 (2016), https://doi.org/10.18632/oncotarget.10532.Search in Google Scholar

[13] G. P. Nagaraju, R. Dontula, B. F. El-Rayes, S. S. Lakka. Carcinogenesis 35, 967 (2014), https://doi.org/10.1093/carcin/bgu072.Search in Google Scholar

[14] N. Said, H. F. Frierson, M. Sanchez-Carbayo, R. A. Brekken, D. Theodorescu. J. Clin. Invest. 123, 751 (2013), https://doi.org/10.1172/JCI64782.Search in Google Scholar

[15] O. L. Podhajcer, L. Benedetti, M. R. Girotti, F. Prada, E. Salvatierra, A. S. Llera. Cancer Metastasis Rev. 27, 523 (2008), https://doi.org/10.1007/s10555-008-9135-x.Search in Google Scholar

[16] H. Sage, C. Johnson, P. Bornstein. J. Biol. Chem. 259, 3993 (1984), https://doi.org/10.1016/s0021-9258(17)43194-2.Search in Google Scholar

[17] E. Miele, G. P. Spinelli, E. Miele, F. Tomao, S. Tomao. Int. J. Nanomed. 4, 99 (2009), https://doi.org/10.2147/ijn.s3061.Search in Google Scholar

[18] M. Purcell, J. F. Neault, H. A. Tajmir-Riahi. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1478, 61 (2000), https://doi.org/10.1016/S0167-4838(99)00251-4.Search in Google Scholar

[19] K. Paál, J. Müller, L. Hegedûs. Eur. J. Biochem. 268, 2187 (2001), https://doi.org/10.1046/j.1432-1327.2001.02107.x.Search in Google Scholar

[20] A. Spada, J. Emami, J. A. Tuszynski, A. Lavasanifar. Mol. Pharm. 18, 1862 (2021), https://doi.org/10.1021/acs.molpharmaceut.1c00046.Search in Google Scholar

[21] A. Parodi, J. Miao, S. M. Soond, M. Rudzińska, A. A. Zamyatnin. Biomolecules 9 (2019), https://doi.org/10.3390/biom9060218.Search in Google Scholar

[22] B. Zhang, S. Wan, X. Peng, M. Zhao, S. Li, Y. Pu, B. He. J. Mater. Chem. B 8, 3939 (2020), https://doi.org/10.1039/D0TB00327A.Search in Google Scholar

[23] E. Karami, M. Behdani, F. Kazemi-Lomedasht. J. Drug Deliv. Sci. Technol. 55, 101471 (2020), https://doi.org/10.1016/j.jddst.2019.101471.Search in Google Scholar

[24] J. Yu, J. Zhang, J. Jin, W. Jiang. J. Mater. Chem. B 9, 8424 (2021), doi:https://doi.org/10.1039/d1tb01022k.Search in Google Scholar

[25] A. A. A. Smith, K. Zuwala, O. Pilgram, K. S. Johansen, M. Tolstrup, F. Dagnæs-Hansen, A. N. Zelikin. ACS Macro Lett. 5, 1089 (2016), https://doi.org/10.1021/acsmacrolett.6b00544.Search in Google Scholar

[26] Y. Jiang, H. Lu, A. Dag, G. Hart-Smith, M. H. Stenzel. J. Mater. Chem. B 4, 2017 (2016), https://doi.org/10.1039/c5tb02576a.Search in Google Scholar

[27] A. Dag, Y. Jiang, K. J. A. Karim, G. Hart-Smith, W. Scarano, M. H. Stenzel. Macromol. Rapid Commun. 36, 890 (2015), https://doi.org/10.1002/marc.201400576.Search in Google Scholar

[28] A. Abuchowski, T. Van Es, N. C. Palczuk, F. F. Davis. J. Biol. Chem. 252, 3578 (1977), https://doi.org/10.1016/s0021-9258(17)40291-2.Search in Google Scholar

[29] Y. Jiang, M. Stenzel. Macromol. Biosci. 16, 791 (2016), https://doi.org/10.1002/mabi.201500453.Search in Google Scholar

[30] K. Eisele, R. A. Gropeanu, C. M. Zehendner, A. Rouhanipour, A. Ramanathan, G. Mihov, K. Koynov, C. R. W. Kuhlmann, S. G. Vasudevan, H. J. Luhmann, T. Weil. Biomaterials 31, 8789 (2010), https://doi.org/10.1016/j.biomaterials.2010.07.088.Search in Google Scholar

[31] X. Chen, M. Wang, Y. Hu, T. Gong, Z.-R. Zhang, R. Yu, Y. Fu. J. Mater. Chem. B 8, 2139 (2020), https://doi.org/10.1039/C9TB02780G.Search in Google Scholar

[32] M. Gharbavi, H. Danafar, A. Sharafi. J. Biomed. Mater. Res. 108, 1688 (2020), https://doi.org/10.1002/jbm.a.36935.Search in Google Scholar

[33] Y. Jiang, H. Lu, F. Chen, M. Callari, M. Pourgholami, D. Morris, M. Stenzel. Biomacromolecules 17, 808 (2016), https://doi.org/10.1021/acs.biomac.5b01537.Search in Google Scholar

[34] S. Hafner, M. Raabe, Y. Wu, T. Wang, Z. Zuo, V. Rasche, T. Syrovets, T. Weil, T. Simmet. Adv. Ther. 2, 1900084 (2019), https://doi.org/10.1002/adtp.201900084.Search in Google Scholar

[35] Y. Xu, L. Tang, Y. Liu, C. Qian, P. Chen, Y. Xin, H. Liu, Y. Qu. Colloids Surf. B Biointerfaces 201, 111642 (2021), https://doi.org/10.1016/j.colsurfb.2021.111642.Search in Google Scholar

[36] J. Mariam, S. Sivakami, P. M. Dongre. Drug Deliv. 23, 2668 (2016), https://doi.org/10.3109/10717544.2015.1048488.Search in Google Scholar

[37] H. Hyun, J. Park, K. Willis, J. E. Park, L. T. Lyle, W. Lee, Y. Yeo. Biomaterials 180, 206 (2018), https://doi.org/10.1016/j.biomaterials.2018.07.024.Search in Google Scholar

[38] Y. Xu, L. Tang, P. Chen, M. Chen, M. Zheng, F. Shi, Y. Wang. AAPS PharmSciTech. 22, 1 (2021), https://doi.org/10.1208/s12249-021-02000-2.Search in Google Scholar

[39] R. M. Lieser, D. Yur, M. O. Sullivan, W. Chen. Bioconjugate Chem. 31, 2272 (2020), https://doi.org/10.1021/acs.bioconjchem.0c00456.Search in Google Scholar

[40] L. Xu, S. L. Kuan, T. Weil. Angew. Chem. Int. Ed. 60, 13757 (2021), https://doi.org/10.1002/anie.202012034.Search in Google Scholar

[41] Z. Liu, X. Chen. Chem. Soc. Rev. 45, 1432 (2016), https://doi.org/10.1039/c5cs00158g.Search in Google Scholar

[42] Z. Liu, C. Dong, X. Wang, H. Wang, W. Li, J. Tan, J. Chang. ACS Appl. Mater. Interfaces 6, 2393 (2014), https://doi.org/10.1021/am404734c.Search in Google Scholar

[43] J. Liu, V. Bulmus, D. L. Herlambang, C. Barner‐Kowollik, M. H. Stenzel, T. P. Davis. Angew. Chem. Int. Ed. 46, 3099 (2007).10.1002/anie.200604922Search in Google Scholar PubMed

[44] N. Vanparijs, S. Maji, B. Louage, L. Voorhaar, D. Laplace, Q. Zhang, Y. Shi, W. E. Hennink, R. Hoogenboom, B. G. De Geest. Polym. Chem. 6, 5602 (2015).10.1039/C4PY01224KSearch in Google Scholar

[45] X. Huang, M. Li, D. C. Green, D. S. Williams, A. J. Patil, S. Mann. Nat. Commun. 4, 1 (2013), https://doi.org/10.1038/ncomms3239.Search in Google Scholar

[46] B. Le Droumaguet, K. Velonia. Angew. Chem. 120, 6359 (2008).10.1002/ange.200801007Search in Google Scholar

[47] K. L. Heredia, D. Bontempo, T. Ly, J. T. Byers, S. Halstenberg, H. D. Maynard. J. Am. Chem. Soc. 127, 16955 (2005).10.1021/ja054482wSearch in Google Scholar PubMed

[48] R. Duncan, M. J. Vicent. Adv. Drug Deliv. Rev. 65, 60 (2013), https://doi.org/10.1016/J.ADDR.2012.08.012.Search in Google Scholar

[49] J. T. Sockolosky, F. C. Szoka. Adv. Drug Deliv. Rev. 91, 109 (2015), https://doi.org/10.1016/j.addr.2015.02.005.Search in Google Scholar

[50] W. Mier, J. Hoffend, S. Krämer, J. Schuhmacher, W. E. Hull, M. Eisenhut, U. Haberkorn. Bioconjugate Chem. 16, 237 (2005), https://doi.org/10.1021/bc034216c.Search in Google Scholar

[51] G. A. Even, M. A. Green. Int. J. Radiat. Appl. Instrument. 16, 319 (1989), doi:https://doi.org/10.1016/0883-2897(89)90014-7.Search in Google Scholar

[52] Y. S. Chang, J. M. Jeong, Y. S. Lee, H. W. Kim, G. B. Rai, S. J. Lee, D. S. Lee, J. K. Chung, M. C. Lee. Bioconjugate Chem. 16, 1329 (2005), https://doi.org/10.1021/bc050086r.Search in Google Scholar

[53] S. Y. Wu, J. W. Kuo, T. K. Chang, R. S. Liu, R. C. Lee, S. J. Wang, W. J. Lin, H. E. Wang. Nucl. Med. Biol. 39, 1026 (2012), https://doi.org/10.1016/j.nucmedbio.2012.04.008.Search in Google Scholar

[54] A. M. Mansour, J. Drevs, N. Esser, F. M. Hamada, O. A. Badary, C. Unger, I. Fichtner, F. Kratz. Cancer Res. 63, 4062 (2003).Search in Google Scholar

[55] K. Thibaudeau, R. Léger, X. Huang, M. Robitaille, O. Quraishi, C. Soucy, N. Bousquet-Gagnon, P. Van Wyk, V. Paradis, J. P. Castaigne, D. Bridon. Bioconjugate Chem. 16, 1000 (2005), https://doi.org/10.1021/bc050102k.Search in Google Scholar

[56] J. G. Mehtala, C. Kulczar, M. Lavan, G. Knipp, A. Wei. Bioconjugate Chem. 26, 941 (2015).10.1021/acs.bioconjchem.5b00143Search in Google Scholar PubMed PubMed Central

[57] A. Wall, K. Nicholls, M. B. Caspersen, S. Skrivergaard, K. A. Howard, K. Karu, V. Chudasama, J. R. Baker. Org. Biomol. Chem. 17, 7870 (2019), https://doi.org/10.1039/c9ob00721k.Search in Google Scholar

[58] J. Liu, V. Bulmus, C. Barner-Kowollik, M. H. Stenzel, T. P. Davis. Macromol. Rapid Commun. 28 (2007), https://doi.org/10.1002/marc.200600693.Search in Google Scholar

[59] Z. Li, Y. Jiang, K. Wust, M. Callari, M. H. Stenzel. Aust. J. Chem. 73, 1034 (2020), https://doi.org/10.1071/CH19617.Search in Google Scholar

[60] Y. Jiang, M. Liang, D. Svejkar, G. Hart-Smith, H. Lu, W. Scarano, M. H. Stenzel. Chem. Commun. 50, 6394 (2014), https://doi.org/10.1039/c4cc00616j.Search in Google Scholar

[61] Y. Jiang, H. Lu, Y. Khine, A. Dag, M. Stenzel. Biomacromolecules 15, 4195 (2014), https://doi.org/10.1021/bm501205x.Search in Google Scholar

[62] K. Taguchi, H. Lu, Y. Jiang, T. T. Hung, M. H. Stenzel. J. Mater. Chem. B 6, 6278 (2018), https://doi.org/10.1039/C8TB01613E.Search in Google Scholar

[63] Y. Jiang, H. Lu, Y. Y. Khine, A. Dag, M. H. Stenzel. Biomacromolecules 15, 4195 (2014), https://doi.org/10.1021/bm501205x.Search in Google Scholar

[64] Y. Jiang, S. Wong, F. Chen, T. Chang, H. Lu, M. H. Stenzel. Bioconjugate Chem. 28, 979 (2017), https://doi.org/10.1021/acs.bioconjchem.6b00698.Search in Google Scholar

[65] D. Sleep. Expert Opin. Drug Deliv. 12, 793 (2015), https://doi.org/10.1517/17425247.2015.993313.Search in Google Scholar

[66] S. JevsÌŒevar, M. Kunstelj, V. G. Porekar. Biotechnol. J. 5, 113 (2010), https://doi.org/10.1002/biot.200900218.Search in Google Scholar

[67] F. Biedermann, U. Rauwald, J. M. Zayed, O. A. Scherman. Chem. Sci. 2, 279 (2011), https://doi.org/10.1039/C0SC00435A.Search in Google Scholar

[68] S. Lee, C. Lee, B. Kim, L. Q. Thao, E. S. Lee, J. O. Kim, K. T. Oh, H. G. Choi, Y. S. Youn. Colloids Surf. B Biointerfaces 147, 281 (2016), https://doi.org/10.1016/j.colsurfb.2016.08.009.Search in Google Scholar

[69] H. Yuan, C. Xu, Y. Zhao, B. Yu, G. Cheng, F. J. Xu. Adv. Funct. Mater. 26, 2855 (2016), https://doi.org/10.1002/adfm.201504980.Search in Google Scholar

[70] G. Han, J. T. Wang, X. Ji, L. Liu, H. Zhao. Bioconjugate Chem. 28, 636 (2017), https://doi.org/10.1021/acs.bioconjchem.6b00704.Search in Google Scholar

[71] M. Dockal, D. C. Carter, F. Rüker. J. Biol. Chem. 274, 29303 (1999), https://doi.org/10.1074/jbc.274.41.29303.Search in Google Scholar

[72] S. Al-Harthi, J. I. Lachowicz, M. E. Nowakowski, M. Jaremko, Ł. Jaremko. J. Inorg. Biochem. 198, 110716 (2019), https://doi.org/10.1016/j.jinorgbio.2019.110716.Search in Google Scholar

[73] S. Evoli, D. L. Mobley, R. Guzzi, B. Rizzuti. Phys. Chem. Chem. Phys. 18, 32358 (2016), https://doi.org/10.1039/c6cp05680f.Search in Google Scholar

[74] H. Rimac, C. Dufour, Ž. Debeljak, B. Zorc, M. Bojić. Molecules 22 (2017), https://doi.org/10.3390/molecules22071153.Search in Google Scholar

[75] P. Ascenzi, A. di Masi, G. Fanali, M. Fasano. Cell Death Dis. 1, 15025 (2015), https://doi.org/10.1038/cddiscovery.2015.25.Search in Google Scholar

[76] S. Curry. Drug Metabol. Pharmacokinet. 24, 342 (2009).10.2133/dmpk.24.342Search in Google Scholar PubMed

[77] A. Zorzi, S. Linciano, A. Angelini. Medchemcomm 10, 1068 (2019), https://doi.org/10.1039/c9md00018f.Search in Google Scholar

[78] J. Lau, O. Jacobson, G. Niu, K.-S. Lin, F. Bénard, X. Chen. Bioconjugate Chem. 30, 487 (2019), https://doi.org/10.1021/acs.bioconjchem.8b00919.Search in Google Scholar

[79] H. Liu, K. D. Moynihan, Y. Zheng, G. L. Szeto, A. V. Li, B. Huang, D. S. Van Egeren, C. Park, D. J. Irvine. Nature 507, 519 (2014), https://doi.org/10.1038/nature12978.Search in Google Scholar

[80] T. Peters. in All About Albumin: Biochemistry, Genetics and Medical Applications, Academic Press, San Diego (1995).Search in Google Scholar

[81] C. E. Callmann, C. L. M. Leguyader, S. T. Burton, M. P. Thompson, R. Hennis, C. Barback, N. M. Henriksen, W. C. Chan, M. J. Jaremko, J. Yang, A. Garcia, M. D. Burkart, M. K. Gilson, J. D. Momper, P. A. Bertin, N. C. Gianneschi. J. Am. Chem. Soc. 141, 11765 (2019), https://doi.org/10.1021/jacs.9b04272.Search in Google Scholar

[82] M. Abdallah, O. O. Müllertz, I. K. Styles, A. Mörsdorf, J. F. Quinn, M. R. Whittaker, N. L. Trevaskis. J. Contr. Release 327, 117 (2020), https://doi.org/10.1016/j.jconrel.2020.07.046.Search in Google Scholar

[83] L. Bekale, D. Agudelo, H. A. Tajmir-Riahi. Colloids Surf. B Biointerfaces 130, 141 (2015), https://doi.org/10.1016/j.colsurfb.2015.03.045.Search in Google Scholar

[84] A. Asadi, A. A. Saboury, A. A. Moosavi-Movahedi, A. Divsalar, M. N. Sarbolouki. Int. J. Biol. Macromol. 43, 262 (2008), https://doi.org/10.1016/j.ijbiomac.2008.06.005.Search in Google Scholar

[85] A. Munasinghe, A. Mathavan, A. Mathavan, P. Lin, C. M. Colina. J. Phys. Chem. B 123, 5196 (2019), https://doi.org/10.1021/acs.jpcb.8b12268.Search in Google Scholar

[86] Y. D. Xu, R. Y. Lai, E. Procházková, M. H. Stenzel. ACS Macro Lett. 10, 819 (2021), https://doi.org/10.1021/acsmacrolett.1c00270.Search in Google Scholar

[87] J. De Vrieze, B. Louage, K. Deswarte, Z. Zhong, R. De Coen, S. Van Herck, L. Nuhn, C. Kaas Frich, A. N. Zelikin, S. Lienenklaus, N. N. Sanders, B. N. Lambrecht, S. A. David, B. G. De Geest. Angew. Chem. Int. Ed. 58, 15390 (2019), https://doi.org/10.1002/anie.201905687.Search in Google Scholar

[88] C. K. Frich, F. Krüger, R. Walther, C. Domar, A. H. F. Andersen, A. Tvilum, F. Dagnæs-Hansen, P. W. Denton, M. Tolstrup, S. R. Paludan, J. Münch, A. N. Zelikin. J. Contr. Release 294, 298 (2019), https://doi.org/10.1016/j.jconrel.2018.12.016.Search in Google Scholar

Published Online: 2022-01-21

© 2022 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/