Abstract
Currently, the agricultural sector is responsible for the contamination of groundwater and springs due to the excessive use of pesticides, which represents a risk to human and environmental health. Among pesticides, glyphosate is the most used herbicide to increase agricultural production, however, it can cause intoxication in humans and has been classified as a potentially carcinogenic agent. Alternatives for removing these contaminants from water have been studied and discussed, including biosorption, a physical-chemical process that removes substances from solutions using a natural and renewable material. In this sense, this work studied the process to obtain cationic cellulose microfibers (cCMF) from sugarcane bagasse residue, by cellulose isolation followed by cationization reaction with Girard T reagent to promote a new adsorbent for glyphosate removal from water. It was observed that cCMF structure maintains the fibrillar morphology after the microfiber production (1.375 mmol g−1 oxidation degree). Results of zero charge of cCMF microfibers showed an isoelectric point pH = 5.4 ± 0.016 and the highest adsorption capacity was reached at pH 14 (59.21 %), showing a clear pH dependence on the adsorption process. Thereby, the cCMF can be produced from sugarcane bagasse residue being applied as a potential biomaterial for removing organic compounds from water.
Funding source: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Award Identifier / Grant number: 001
Funding source: Fundação de Amparo à Pesquisa do Estado de São Paulo
Award Identifier / Grant number: 2014/50869-6
Award Identifier / Grant number: 2020/06577-1
Award Identifier / Grant number: 2021/09773-9
Acknowledgments
The authors would like to thank FAPESP-Brazil (Sao Paulo Research Foundation) [grant number 2014/50869-6, 2020/06577-1 and 2021/09773-9] and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) [Finance Code 001] for the financial support. We would also like to thank LabMMEV-FCT/UNESP for the SEM images.
-
Author Contribution: Conceptualization: MVGL, ASG, GRT, GD, AEJ; Methodology: MVGL, ASG, GRT, GD, AEJ; Validation: MVGL, ASG, GRT, GD, AEJ; Formal Analysis: MVGL, ASG, GRT, GD, AEJ; Investigation: MVGL, ASG, GRT, GD, AEJ; Resources: MVGL, GD, AEJ; Writing Original: MVGL, ASG, GRT, GD; Writing Review & Editing: MVGL, ASG, GRT, GD, AEJ; Supervision: GD, AEJ; Funding acquisition: MVGL, GD, AEJ.
References
[1] Nations, U. World population prospects: the 2022 revision. Department of Economic and Social Affairs, Population Division (2022), Retrieved November 5, 2022, from, https://population.un.org/wpp/.Search in Google Scholar
[2] F. Peres, J. C. Moreira. É veneno ou é remédio? Agrotóxicos, saúde e ambiente. É veneno ou é remédio? Editora FIOCRUZ, Rio de Janeiro, 20th ed. (2003).10.7476/9788575413173Search in Google Scholar
[3] F. A. C. Rodrigues, O. L. Weber, S. dos, E. F. G. de C. Dores, M. de N. Klautau-Guimar, R. Tidon, C. K. Grisólia. Pesticidas Rev. Ecotoxicologia e Meio Ambiente 15, 2 (2005), https://doi.org/10.5380/pes.v15i0.4468.Search in Google Scholar
[4] A. S. Da Silva, F. C. B. Fernandes, J. O. Tognolli, L. Pezza, H. R. Pezza. Spectrochim. Acta Mol. Biomol. Spectrosc. 79, 1881 (2011), https://doi.org/10.1016/j.saa.2011.05.081.Search in Google Scholar PubMed
[5] C. V. Waiman, M. J. Avena, M. Garrido, B. Fernández Band, G. P. Zanini. Geoderma 170, 154 (2012), https://doi.org/10.1016/j.geoderma.2011.11.027.Search in Google Scholar
[6] A. Szekacs, B. Darvas. Forty years with glyphosate. In Herbicides – Properties, Synthesis and Control of Weeds, IntechOpen, Budapest (2012).10.5772/32491Search in Google Scholar
[7] (IARC), I. A. F. R. O. C. Some Organophosphate Insecticides and Herbicides. IARC Monographs on the evaluation of carcinogenic risks to humans, Lyon, France, Vol. 112 (2015).Search in Google Scholar
[8] O. P. de Amarante Junior, T. C. R. dos Santos, N. M. Brito, M. L. Ribeiro. Química Nova 25, 589 (2002), https://doi.org/10.1590/s0100-40422002000400014.Search in Google Scholar
[9] Y. S. Hu, Y. Q. Zhao, B. Sorohan. Desalination 271, 150 (2011), https://doi.org/10.1016/j.desal.2010.12.014.Search in Google Scholar
[10] M. L. Ribeiro, C. Lourencetti, S. Y. Pereira, M. R. R. de Marchi. Química Nova 30, 688 (2007), https://doi.org/10.1590/s0100-40422007000300031.Search in Google Scholar
[11] T. Ahmad, M. Rafatullah, A. Ghazali, O. Sulaiman, R. Hashim, A. Ahmad. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev. 28, 231 (2010), https://doi.org/10.1080/10590501.2010.525782.Search in Google Scholar PubMed
[12] P. Saritha, C. Aparna, V. Himabindu, Y. Anjaneyulu. J. Hazard. Mater. 149, 609 (2007), https://doi.org/10.1016/j.jhazmat.2007.06.111.Search in Google Scholar PubMed
[13] T. Aungpradit, P. Sutthivaiyakit, D. Martens, S. Sutthivaiyakit, A. A. F. Kettrup. J. Hazard. Mater. 146, 204 (2007), https://doi.org/10.1016/j.jhazmat.2006.12.007.Search in Google Scholar PubMed
[14] M. Mahalakshmi, B. Arabindoo, M. Palanichamy, V. Murugesan. J. Hazard. Mater. 143, 240 (2007), https://doi.org/10.1016/j.jhazmat.2006.09.008.Search in Google Scholar PubMed
[15] M. I. Maldonado, S. Malato, L. A. Pérez-Estrada, W. Gernjak, I. Oller, X. Doménech, J. Peral. J. Hazard. Mater. 138, 363 (2006), https://doi.org/10.1016/j.jhazmat.2006.05.058.Search in Google Scholar PubMed
[16] A. Bhatnagar, V. J. P. Vilar, C. M. S. Botelho, R. A. R. Boaventura. Adv. Colloid Interface Sci. 160, 1 (2010), https://doi.org/10.1016/j.cis.2010.06.011.Search in Google Scholar PubMed
[17] W. F. da P. Bezerra, G. Dognani, L. N. de Alencar, M. P. S. Parizi, R. F. Boina, F. C. Cabrera, A. E. Job. Matéria (Rio de Janeiro) 27 (2022), https://doi.org/10.1590/s1517-707620220001.1342.Search in Google Scholar
[18] G. M. Gadd. J. Chem. Technol. Biotechnol. 84, 13 (2009), https://doi.org/10.1002/jctb.1999.Search in Google Scholar
[19] M. Silva, S. P. da do, G. S. C. Raulino, C. B. Vidal, A. C. A. de Lima, R. F. do Nascimento. Rev. DAE 61, 66 (2013), https://doi.org/10.4322/dae.2014.114.Search in Google Scholar
[20] W. D. M. Souza, J. J. F. Alves, T. M. B. F. Oliveira, D. S. Oliveira. Blucher Chem. Proc. 3, 619 (2015), https://doi.org/10.5151/chenpro-5erq-am2.Search in Google Scholar
[21] T. F. Citadin, M. A. P. Cechinel. Dessorção de corante Remazol Azul RR de bagaço de uva: recuperação do corante e reuso do biossorvente, Chemical Engineering Term paper - UNESC, Criciúma-SC, Brasil (2018).Search in Google Scholar
[22] L. V. S. Rodrigues. Avaliação do potencial biossorvente da biomassa de cascas de abacaxi para remoção de agroquímico em matrizes aquosas, Instituto Federal Goiano, Goiania-GO, Brasil (2019).Search in Google Scholar
[23] I. Larraza, J. Vadillo, A. Santamaria-Echart, A. Tejado, M. Azpeitia, E. Vesga, A. Eceiza. Polym. Degrad. Stab. 173, 109084 (2020), https://doi.org/10.1016/j.polymdegradstab.2020.109084.Search in Google Scholar
[24] J. Xu, Z. Wu, Q. Wu, Y. Kuang. Carbohydr. Polym. 229, 115553 (2020), https://doi.org/10.1016/j.carbpol.2019.115553.Search in Google Scholar PubMed
[25] R. I. Baron, S. Coseri. React. Funct. Polym. 157, 104768 (2020), https://doi.org/10.1016/j.reactfunctpolym.2020.104768.Search in Google Scholar
[26] V. Rana, S. Malik, G. Joshi, N. K. Rajput, P. K. Gupta. Int. J. Biol. Macromol. 170, 793 (2021), https://doi.org/10.1016/j.ijbiomac.2020.12.165.Search in Google Scholar PubMed
[27] A. Mautner, T. Kobkeatthawin, A. Bismarck. Resour. Efficient Technol. 3, 22 (2017), https://doi.org/10.1016/j.reffit.2017.01.005.Search in Google Scholar
[28] H. Sehaqui, A. Mautner, U. Perez de Larraya, N. Pfenninger, P. Tingaut, T. Zimmermann. Carbohydr. Polym. 135, 334 (2016), https://doi.org/10.1016/j.carbpol.2015.08.091.Search in Google Scholar PubMed
[29] S. Veelaert, D. De Wit, K. F. Gotlieb, R. Verhé. Carbohydr. Polym. 33, 153 (1997), https://doi.org/10.1016/S0144-8617(97)00046-5.Search in Google Scholar
[30] F. Giacomni, M. A. B. Menegazzo, M. G. da Silva, A. B. da Silva, M. A. S. D. de Barros. Rev. Mater. 22, 2–5 (2017), https://doi.org/10.1590/S1517-707620170002.0159.Search in Google Scholar
[31] D. F. Tzaskos, C. Marcovicz, N. M. P. Dias, N. D. Rosso. Cienc. E Agrotecnol. 36, 399 (2012), https://doi.org/10.1590/S1413-70542012000400003.Search in Google Scholar
[32] X. Huang, G. Dognani, P. Hadi, M. Yang, A. E. Job, B. S. Hsiao. ACS Sustainable Chem. Eng. 8, 4734 (2020), https://doi.org/10.1021/acssuschemeng.9b06683.Search in Google Scholar
[33] Q. Q. Wang, J. Y. Zhu, R. Gleisner, T. A. Kuster, U. Baxa, S. E. McNeil. Cellulose 19, 1631 (2012), https://doi.org/10.1007/s10570-012-9745-x.Search in Google Scholar
[34] J. Sirviö, H. Liimatainen, J. Niinimäki, O. Hormi. Carbohydr. Polym. 86, 260 (2011), https://doi.org/10.1016/j.carbpol.2011.04.054.Search in Google Scholar
[35] C. G. Otoni, J. S. L. Figueiredo, L. B. Capeletti, M. B. Cardoso, J. S. Bernardes, W. Loh. ACS Appl. Bio Mater. 2, 1975 (2019), https://doi.org/10.1021/acsabm.9b00034.Search in Google Scholar PubMed
[36] J. Sirviö, A. Honka, H. Liimatainen, J. Niinimäki, O. Hormi. Carbohydr. Polym. 86, 266 (2011), https://doi.org/10.1016/j.carbpol.2011.04.046.Search in Google Scholar
[37] R. M. Romano, J. M. de Oliveira, V. M. de Oliveira, I. M. de Oliveira, Y. R. Torres, P. Bargi-Souza, A. J. M. Andrade, M. A. Romano. Front. Endocrinol. 12, 627167 (2021), https://doi.org/10.3389/fendo.2021.627167.Search in Google Scholar PubMed PubMed Central
[38] E. Vidal, A. Negro, A. Cassano, C. Zalazar. Photochem. Photobiol. Sci. 14, 366 (2015), https://doi.org/10.1039/c4pp00248b.Search in Google Scholar PubMed
[39] A. Silva Gomes, M. Vitória Guimarães Leal, G. Roefero Tolosa, F. Camargo Cabrera, G. Dognani, A. Eloízo Job. Bioresour. Technol. 380, 129096 (2023), https://doi.org/10.1016/j.biortech.2023.129096.Search in Google Scholar PubMed
[40] R. C. Pereira, P. R. Anizelli, E. Di Mauro, D. F. Valezi, A. C. S. da Costa, C. T. B. V. Zaia, D. A. M. Zaia. Geochem. Trans. 20, 3 (2019), https://doi.org/10.1186/s12932-019-0063-1.Search in Google Scholar PubMed PubMed Central
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2022-1205).
© 2023 IUPAC & De Gruyter