Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 28, 2023

Role of fiber density of amine functionalized dendritic fibrous nanosilica on CO2 capture capacity and kinetics

  • Baljeet Singh ORCID logo and Vivek Polshettiwar EMAIL logo

Abstract

Textural properties of the solid sorbents are critical to tuning their CO2 capture performance. In this work, we studied the effect of fiber density (in turn, pore size, distribution, and accessibility) on CO2 capture capacity and kinetics. CO2 solid sorbents were prepared by physisorption of tetraethylenepentamine (TEPA) molecules on dendritic fibrous nanosilica (DFNS) with varying fiber density. Among the various DFNS, the DFNS with moderate fiber density [DFNS-3] showed the best CO2 capture capacity under the flue gas condition. The maximum CO2 capture capacity achieved was 24.3 wt % (5.53 mmol/g) at 75 °C for DFNS-3 under humid gas conditions. Fiber density also played a role in the kinetics of CO2 capture. DFNS-1 with dense fiber density needed ∼10.4 min to reach 90 % capture capacity, while DFNS-3 (moderate fiber density) needed only 6.4 min, which further decreased to 5.9 min for DFNS-5 with lightly dense fibers. The DFNS-impregnated TEPA also showed good recyclability during 21 adsorption and desorption cycles under humid and dry conditions. The total CO2 capture capacity of DFNS-3 (14.7) in 21 cycles was 108.9 and 105.0 mmol/g under humid and dry conditions, respectively. Adsorption lifetime calculation and recyclability confirmed the fiber density-dependent CO2 capture performance.


Article note:

A collection of invited papers by the winners of the 2020 and 2022 IUPAC ChemRAWN VII Prize for Green Chemistry.



Corresponding author: Vivek Polshettiwar, Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India, email:

Acknowledgments

We acknowledge the SEM facility of TIFR, Mumbai. We sincerely thank Mr. L Borde and Ms. B Chalke’s assisting with EM measurements.

References

[1] S. Solomon, G.-K. Plattner, R. Knutti, P. Friedlingstein. Proc. Natl. Acad. Sci. U. S. A. 106, 1704 (2009), https://doi.org/10.1073/pnas.0812721106.Search in Google Scholar PubMed PubMed Central

[2] D. A. Lashof, D. R. Ahuja. Nature 344, 529 (1990), https://doi.org/10.1038/344529a0.Search in Google Scholar

[3] G. Iyer, Y. Ou, J. Edmonds, A. A. Fawcett, N. Hultman, J. McFarland, J. Fuhrman, S. Waldhoff, H. McJeon. Nat. Clim. Change 12, 1092 (2022), https://doi.org/10.1038/s41558-022-01517-z.Search in Google Scholar

[4] P. R. Liu, A. E. Raftery. Commun. Earth Environ. 2, 29 (2021), https://doi.org/10.1038/s43247-021-00097-8.Search in Google Scholar PubMed PubMed Central

[5] N. Mac Dowell, P. S. Fennell, N. Shah, G. C. Maitland. Nat. Clim. Change 7, 243 (2017), https://doi.org/10.1038/nclimate3231.Search in Google Scholar

[6] H. Chalmers. Nat. Clim. Change 9, 348 (2019), https://doi.org/10.1038/s41558-019-0462-4.Search in Google Scholar

[7] L. Whitmarsh, D. Xenias, C. R. Jones. Palgrave Commun. 5, 17 (2019), https://doi.org/10.1057/s41599-019-0217-x.Search in Google Scholar

[8] H. Chand, P. Choudhary, A. Kumar, A. Kumar, V. Krishnan. J. CO2 Util. 51, 101646 (2021), https://doi.org/10.1016/j.jcou.2021.101646.Search in Google Scholar

[9] A. Kumar, A. Kumar, V. Krishnan. ACS Catal. 10, 10253 (2020), https://doi.org/10.1021/acscatal.0c02947.Search in Google Scholar

[10] P. Gabrielli, M. Gazzani, M. Mazzotti. Ind. Eng. Chem. Res. 59, 7033 (2020), https://doi.org/10.1021/acs.iecr.9b06579.Search in Google Scholar

[11] C. Hepburn, E. Adlen, J. Beddington, E. A. Carter, S. Fuss, N. Mac Dowell, J. C. Minx, P. Smith, C. K. Williams. Nature 575, 87 (2019), https://doi.org/10.1038/s41586-019-1681-6.Search in Google Scholar PubMed

[12] A. Samanta, A. Zhao, G. K. H. Shimizu, P. Sarkar, R. Gupta. Ind. Eng. Chem. Res. 51, 1438 (2012), https://doi.org/10.1021/ie200686q.Search in Google Scholar

[13] M. T. Dunstan, F. Donat, A. H. Bork, C. P. Grey, C. R. Müller. Chem. Rev. 121, 12681 (2021), https://doi.org/10.1021/acs.chemrev.1c00100.Search in Google Scholar PubMed

[14] C. Halliday, T. A. Hatton. Ind. Eng. Chem. Res. 60, 9313 (2021), https://doi.org/10.1021/acs.iecr.1c00597.Search in Google Scholar

[15] M. Khraisheh, F. Almomani, G. Walker. Sci. Rep. 10, 269 (2020), https://doi.org/10.1038/s41598-019-57151-x.Search in Google Scholar PubMed PubMed Central

[16] J. J. Vericella, S. E. Baker, J. K. Stolaroff, E. B. Duoss, J. O. Hardin, J. Lewicki, E. Glogowski, W. C. Floyd, C. A. Valdez, W. L. Smith, J. H. Satcher, W. L. Bourcier, C. M. Spadaccini, J. A. Lewis, R. D. Aines. Nat. Commun. 6, 6124 (2015), https://doi.org/10.1038/ncomms7124.Search in Google Scholar PubMed

[17] S. Lee, T. P. Filburn, M. Gray, J.-W. Park, H.-J. Song. Ind. Eng. Chem. Res. 47, 7419 (2008), https://doi.org/10.1021/ie8006984.Search in Google Scholar

[18] R. Chang, X. Wu, O. Cheung, W. Liu. J. Mater. Chem. A 10, 1682 (2022), https://doi.org/10.1039/d1ta07697c.Search in Google Scholar

[19] P. Murge, S. Dinda, S. Roy. Langmuir 35, 14751 (2019), https://doi.org/10.1021/acs.langmuir.9b02259.Search in Google Scholar PubMed

[20] N. Czuma, I. Casanova, P. Baran, J. Szczurowski, K. Zarębska. Sci. Rep. 10, 1825 (2020), https://doi.org/10.1038/s41598-020-58591-6.Search in Google Scholar PubMed PubMed Central

[21] Z. Hu, Y. Wang, B. B. Shah, D. Zhao. Adv. Sustain. Syst. 3, 1800080 (2019), https://doi.org/10.1002/adsu.201800080.Search in Google Scholar

[22] B. Zhao, M. Borghei, T. Zou, L. Wang, L.-S. Johansson, J. Majoinen, M. H. Sipponen, M. Österberg, B. D. Mattos, O. J. Rojas. ACS Nano 15, 6774 (2021), https://doi.org/10.1021/acsnano.0c10307.Search in Google Scholar PubMed PubMed Central

[23] B. Singh, A. Maity, V. Polshettiwar. ChemistrySelect 3, 10684 (2018), https://doi.org/10.1002/slct.201802341.Search in Google Scholar

[24] G. A. Mutch, S. Shulda, A. J. McCue, M. J. Menart, C. V. Ciobanu, C. Ngo, J. A. Anderson, R. M. Richards, D. Vega-Maza. J. Am. Chem. Soc. 140, 4736 (2018), https://doi.org/10.1021/jacs.8b01845.Search in Google Scholar PubMed

[25] E. E. Ünveren, B. Ö. Monkul, Ş. Sarıoğlan, N. Karademir, E. Alper. Petroleum 3, 37 (2017), https://doi.org/10.1016/j.petlm.2016.11.001.Search in Google Scholar

[26] J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O’Hare, Z. Zhong. Energy Environ. Sci. 7, 3478 (2014), https://doi.org/10.1039/c4ee01647e.Search in Google Scholar

[27] Y. Fan, X. Jia. Energy Fuels 36, 1252 (2022), https://doi.org/10.1021/acs.energyfuels.1c03788.Search in Google Scholar

[28] B. Singh, J. Na, M. Konarova, T. Wakihara, Y. Yamauchi, C. Salomon, M. B. Gawande. Bull. Chem. Soc. Jpn. 93, 1459 (2020), https://doi.org/10.1246/bcsj.20200136.Search in Google Scholar

[29] A. Maity, V. Polshettiwar. ChemSusChem 10, 3866 (2017), https://doi.org/10.1002/cssc.201701076.Search in Google Scholar PubMed PubMed Central

[30] V. Polshettiwar. Acc. Chem. Res. 55, 1395 (2022), https://doi.org/10.1021/acs.accounts.2c00031.Search in Google Scholar PubMed

[31] J. Wu, X. Zhu, F. Yang, T. Ge, R. Wang. J. Chem. Eng. 425, 131409 (2021), https://doi.org/10.1016/j.cej.2021.131409.Search in Google Scholar

[32] A. Cherevotan, J. Raj, S. C. Peter. J. Mater. Chem. A 9, 27271 (2021), https://doi.org/10.1039/d1ta05961k.Search in Google Scholar

[33] L. Lin, Y. Meng, T. Ju, S. Han, F. Meng, J. Li, Y. Du, M. Song, T. Lan, J. Jiang. J. Environ. Manag. 325, 116438 (2023), https://doi.org/10.1016/j.jenvman.2022.116438.Search in Google Scholar PubMed

[34] A. C. Forse, K. A. Colwell, M. I. Gonzalez, S. Benders, R. M. Torres-Gavosto, B. Blümich, J. A. Reimer, J. R. Long. Chem. Mater. 32, 3570 (2020), https://doi.org/10.1021/acs.chemmater.0c00745.Search in Google Scholar

[35] T. Shi, Y. Zheng, T. Wang, P. Li, Y. Wang, D. Yao. ChemPhysChem 19, 130 (2018), https://doi.org/10.1002/cphc.201700842.Search in Google Scholar PubMed

[36] L. Estevez, D. Barpaga, J. Zheng, S. Sabale, R. L. Patel, J.-G. Zhang, B. P. McGrail, R. K. Motkuri. Ind. Eng. Chem. Res. 57, 1262 (2018), https://doi.org/10.1021/acs.iecr.7b03879.Search in Google Scholar

[37] M. Sevilla, A. S. M. Al-Jumialy, A. B. Fuertes, R. Mokaya. ACS Appl. Mater. Interfaces 10, 1623 (2018), https://doi.org/10.1021/acsami.7b10433.Search in Google Scholar PubMed

[38] V. Zeleňák, M. Badaničová, D. Halamová, J. Čejka, A. Zukal, N. Murafa, G. Goerigk. J. Chem. Eng. 144, 336 (2008), https://doi.org/10.1016/j.cej.2008.07.025.Search in Google Scholar

[39] O. Shekhah, Y. Belmabkhout, Z. Chen, V. Guillerm, A. Cairns, K. Adil, M. Eddaoudi. Nat. Commun. 5, 4228 (2014), https://doi.org/10.1038/ncomms5228.Search in Google Scholar PubMed PubMed Central

[40] N. Bayal, B. Singh, R. Singh, V. Polshettiwar. Sci. Rep. 6, 24888 (2016), https://doi.org/10.1038/srep24888.Search in Google Scholar PubMed PubMed Central

[41] V. Polshettiwar, D. Cha, X. Zhang, J. M. Basset. Angew. Chem. Int. Ed. 49, 9652 (2010), https://doi.org/10.1002/anie.201003451.Search in Google Scholar PubMed

[42] R. Verma, R. Belgamwar, P. Chatterjee, R. Bericat-Vadell, J. Sa, V. Polshettiwar. ACS Nano 17, 4526 (2023), https://doi.org/10.1021/acsnano.2c10470.Search in Google Scholar PubMed

[43] A. S. Lilly Thankamony, C. Lion, F. Pourpoint, B. Singh, A. J. Perez Linde, D. Carnevale, G. Bodenhausen, H. Vezin, O. Lafon, V. Polshettiwar. Angew. Chem. Int. Ed. 54, 2190 (2015), https://doi.org/10.1002/anie.201406463.Search in Google Scholar PubMed

[44]. U. Patil, A. Fihri, A.-H. Emwas, V. Polshettiwar. Chem. Sci. 3, 2224 (2012), https://doi.org/10.1039/c2sc20356a.Search in Google Scholar

[45] M. Bouhrara, C. Ranga, A. Fihri, R. R. Shaikh, P. Sarawade, A.-H. Emwas, M. N. Hedhili, V. Polshettiwar. ACS Sustain. Chem. Eng. 1, 1192 (2013), https://doi.org/10.1021/sc400126h.Search in Google Scholar

[46] A. Maity, R. Belgamwar, V. Polshettiwar. Nat. Protoc. 14, 2177 (2019), https://doi.org/10.1038/s41596-019-0177-z.Search in Google Scholar PubMed

[47] K. Mishra Amit, R. Belgamwar, R. Jana, A. Datta, V. Polshettiwar. Proc. Natl. Acad. Sci. U. S. A. 117, 6383 (2020), https://doi.org/10.1073/pnas.1917237117.Search in Google Scholar PubMed PubMed Central

[48] A. Maity, S. Chaudhari, J. J. Titman, V. Polshettiwar. Nat. Commun. 11, 3828 (2020), https://doi.org/10.1038/s41467-020-17711-6.Search in Google Scholar PubMed PubMed Central

[49] B. Singh, V. Polshettiwar. J. Mater. Chem. A 4, 7005 (2016), https://doi.org/10.1039/c6ta01348a.Search in Google Scholar

[50] B. Singh, V. Polshettiwar. Nanoscale 11, 5365 (2019), https://doi.org/10.1039/c8nr10119a.Search in Google Scholar PubMed

[51] M. S. Khosrowshahi, M. A. Abdol, H. Mashhadimoslem, E. Khakpour, H. B. M. Emrooz, S. Sadeghzadeh, A. Ghaemi. Sci. Rep. 12, 8917 (2022), https://doi.org/10.1038/s41598-022-12596-5.Search in Google Scholar PubMed PubMed Central

[52] E. R. Monazam, L. J. Shadle, R. Siriwardane. Ind. Eng. Chem. Res. 50, 10989 (2011), https://doi.org/10.1021/ie201214q.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2023-0103).


Published Online: 2023-03-28
Published in Print: 2023-04-25

© 2023 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Downloaded on 22.9.2023 from https://www.degruyter.com/document/doi/10.1515/pac-2023-0103/html
Scroll to top button