Abstract
In this work, we report an energy upconversion system based on triplet-triplet annihilation comprised of rose bengal dye as the sensitizer and a highly fluorescent 9-(triphenyl)ethynyl-10-phenylanthracene (TPE-PAn) as the triplet annihilator. The energy upconversion can be observed with a low-power laser excitation at 532 nm or noncoherent Xe arc lamp excitaion at 540 nm. A delayed fluorescence from (TPE-PAn) at 418 nm was observed with an energy upconversion up to 0.64 eV and quantum yield of 0.8 %. A white-light emission was achieved as a result of combination of delayed fluorescence from TPE-PAn and residual fluorescence from rose bengal dye.
Funding source: National Science and Technology Council of Taiwan
Award Identifier / Grant number: MOST 111-2113-M-001-041
Funding source: Academia Sinica
Acknowledgments
We are grateful to the National Science and Technology Council of Taiwan and Research Program on Nanoscience and Nanotechnology of Academia Sinica for support of this research.
References
[1(a)] D. C. Neckers. J. Chem. Educ. 64, 649 (1987), https://doi.org/10.1021/ed064p649.Search in Google Scholar
(b) D. C. Neckers. Photochem. Photobiol. 47, 1 (1989).Search in Google Scholar
[2(a)] M. Oelgemöller, C. Jung, J. Ortner, J. Mattayc, E. Zimmermann. Green Chem. 7, 35 (2005), https://doi.org/10.1039/b414230f.Search in Google Scholar
(b) K. Jähnisch, U. Dingerdissen. Chem. Eng. Technol. 28, 426 (2005), https://doi.org/10.1002/ceat.200407139.Search in Google Scholar
(c) R. C. R. Wootton, R. Fortt, A. J. de Mello. Org. Process Res. Dev. 60, 187 (2002), https://doi.org/10.1021/op0155155.Search in Google Scholar
[3(a)] W. Mark. Photosensitisers in Biomedicine, p. 97, John Wiley & Sons Ltd, Chichester, UK (2009).Search in Google Scholar
(b) C. Soldani, A. C. Croce, M. G. Bottone, A. Fraschini, M. Biggiogera, G. Bottiroli, C. Pellicciari. Histochem. Cell Biol. 128, 485 (2007), https://doi.org/10.1007/s00418-007-0333-3.Search in Google Scholar PubMed
(c) E. Wachter, C. Dees, J. Harkins, T. Scott, M. Petersen, R. E. Rush, A. Cada. Laser Surg. Med. 32, 101 (2003), https://doi.org/10.1002/lsm.10138.Search in Google Scholar PubMed
[4(a)] Y. Zhang, K. Aslan, S. N. Malyn, C. D. Geddes. Chem. Phys. Lett. 427, 432 (2006), https://doi.org/10.1016/j.cplett.2006.06.078.Search in Google Scholar
[5(a)] B. Pradhan, S. K. Batabyal, A. J. Pal. Sol. Energy mater. Sol. Cells 91, 769 (2007)10.1016/j.solmat.2007.01.006Search in Google Scholar
(b) M. S. Roy, P. Balraju, M. Kumar, G. D. Sharma. Sol. Energy Mater. Sol. Cells 92, 909 (2008);Search in Google Scholar
(c) C. Simpson, T. M. Clarke, R. W. MacQueen, Y. Y. Cheng, A. J. Trevitt, A. J. Mozer, P. Wagner, T. W. Schmidt, A. Nattestad. Phys. Chem. Chem. Phys. 17, 24826 (2015), https://doi.org/10.1039/c5cp04825g.Search in Google Scholar PubMed
[6] X. Zhang, Z. Jin, Y. Li, S. Li, G. Lu. J. Phys. Chem. C 113, 2630 (2009), https://doi.org/10.1021/jp8085717.Search in Google Scholar
[7(a)] F. L. E. Jakobsson, X. Crispin, M. Cölle, M. Buöchel, D. M. de Leeuw, M. Berggren. Org. Electron. 8, 559 (2007), https://doi.org/10.1016/j.orgel.2007.04.002.Search in Google Scholar
(b) A. Bandhopadhyay, A. J. Pal. J. Phys. Chem. B 107, 2531 (2003), https://doi.org/10.1021/jp027369q.Search in Google Scholar
[8(a)] R. R. Islangulov, D. V. Kozlov, F. N. Castellano. Chem. Commun. 3776 (2005).10.1039/b506575eSearch in Google Scholar PubMed
(b) S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda, G. Wegner. Phys. Rev. Lett. 97, 143903 (2006), https://doi.org/10.1103/physrevlett.97.143903.Search in Google Scholar
(c) S. Baluschev, V. Yakutkin, T. Miteva, Y. Avlasevich, S. Chernov, S. Aleshchenkov, G. Nelles, A. Cheprakov, A. Yasuda, K. Müllen, G. Wegner. Angew. Chem., Int. Ed. 46, 7693 (2007), https://doi.org/10.1002/anie.200700414.Search in Google Scholar PubMed
(d) T. N. Singh-Rachford, F. N. Castellano (Coord.) Chem. Rev. 254, 2560 (2010), https://doi.org/10.1016/j.ccr.2010.01.003.Search in Google Scholar
(e) T. Dilbeck, K. Hanson. J. Phys. Chem. Lett. 9, 5810 (2018), https://doi.org/10.1021/acs.jpclett.8b02635.Search in Google Scholar PubMed
(f) B. Albinsson. A. Olesund. Nat. Photonics 14, 528 (2020), https://doi.org/10.1038/s41566-020-0681-2.Search in Google Scholar
[9] H.-C. Chen, C.-Y. Hung, K.-H. Wang, H.-L. Chen, W.-S. Fann, F.-C. Chien, P. Chen, T. J. Chow, C.-P. Hsu, S.-S. Sun. Chem. Commun. 4064 (2009).10.1039/b905572jSearch in Google Scholar PubMed
[10] P. B. Merkel, J. P. Dinnocenzo. J. Lumin. 129, 303 (2009), https://doi.org/10.1016/j.jlumin.2008.10.013 .Search in Google Scholar
[11(a)] J. Tran. J. Olmsted III. Photochem. Photobiol., A 71, 45 (1993), https://doi.org/10.1016/1010-6030(93)87007-a.Search in Google Scholar
(b) T. Shen, Z. G. Zhao, Q. Yu, H. J. Xu. Photochem. Photobiol. 47, 203 (1989), https://doi.org/10.1016/1010-6030(89)87066-2.Search in Google Scholar
(c) C. R. Lambert, I. E. Kochevar, R. W. Redmond. J. Phys. Chem. B 103, 3737 (1999), https://doi.org/10.1021/jp983812e.Search in Google Scholar
[12(a)] S. K. Chattopadhyay, C. V. Kumar, P. K. Das. Chem. Phys. Lett. 98, 250 (1983), https://doi.org/10.1016/0009-2614(83)87160-7.Search in Google Scholar
(b) S. L. Murov, I. Carmichael, G. L. Hug. Handbook of Photochemistry, Marcel Dekker, New York, 2nd ed. (1993).Search in Google Scholar
[13(a)] G. L. Closs, M. D. Johnson, J. R. Miller, P. Piotrowiak. J. Am. Chem. Soc. 111, 3751 (1989), https://doi.org/10.1021/ja00192a044.Search in Google Scholar
(b) M. E. Sigman, G. L. Closs. J. Phys. Chem. 95, 5012 (1991), https://doi.org/10.1021/j100166a022.Search in Google Scholar
(c) Z. Murtaza, A. P. Zipp, L. A. Worl, D. Graff, W. E. JonesJr., W. D. Bates, T. J. Meyer. J. Am. Chem. Soc. 113, 5113 (1991), https://doi.org/10.1021/ja00013a085.Search in Google Scholar
[14] P. M. Suardi, E. Gassmann, A. M. Braun, E. Oliveros. Helv. Chim. Acta 70, 1760 (1987).10.1002/hlca.19870700712Search in Google Scholar
[15] C. Bohne, E. B. Abuin, J. C. Scaiano. J. Am. Chem. Soc. 112, 4226 (1990), https://doi.org/10.1021/ja00167a018.Search in Google Scholar
[16(a)] N. Yanai, K. Suzuki, T. Ogawa, Y. Sasaki, N. Harada, N. Kimizuka. J. Phys. Chem. A 123, 10197 (2019), https://doi.org/10.1021/acs.jpca.9b08636.Search in Google Scholar PubMed
(b) Y. Zhou, F. N. Castellano, T. W. Schmidt, K. Hanson. ACS Energy Lett. 5, 2322 (2020), https://doi.org/10.1021/acsenergylett.0c01150.Search in Google Scholar
[17] V. Mahalingam, F. Mangiarini, F. Vetrone, V. Venkatramu, M. Bettinelli, A. Speghini. J. A. Capobianco. J. Phys. Chem. C. 112, 17745 (2008), https://doi.org/10.1021/jp8076479.Search in Google Scholar
[18] T. N. Singh-Rachford, R. R. Islangulov, F. N. Castellano. J. Phys. Chem. A 112, 3906 (2008), https://doi.org/10.1021/jp712165h.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2023-0210).
© 2023 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/