Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 31, 2015

Unravelling peptidomes by in silico mining

  • Johannes Koehbach and Kathryn A.V. Jackson
From the journal Peptidomics

Abstract

Peptides of great number and diversity occur in all domains of life and exhibit a range of pharmaceutically relevant bioactivities. The complexity of biological samples including human cells or tissues, plant extracts or animal venom cocktails, often impedes the discovery of novel bioactive peptides using mass spectrometrybased peptidomics analysis. An increasing number of publicly available genome and transcriptome datasets, together with refined bioinformatics analysis, allows for rapid identification of novel peptides which may have been previously unrecognized. Moreover, a combination of information extracted from in silico mining approaches together with data derived from mass spectrometrybased studies provides new impetus for future peptidome analyses, including the discovery of novel bioactive peptides that can serve as starting points for drug development.

References

[1] Newman D.J., Cragg G.M., Natural products as sources of new drugs over the 30 years from 1981 to 2010, J. Nat. Prod., 2012, 75, 311-335. 10.1021/np200906sSearch in Google Scholar

[2] Lipinski C.A., Drug-like properties and the causes of poor solubility and poor permeability, J. Pharmacol. Toxicol. Methods, 2000, 44, 235-249. 10.1016/S1056-8719(00)00107-6Search in Google Scholar

[3] Craik D.J., Fairlie D.P., Liras S., Price D., The future of peptidebased drugs, Chem. Biol. Drug Des., 2013, 81, 136-147. 10.1111/cbdd.12055Search in Google Scholar

[4] Gruber C.W., Muttenthaler M., Freissmuth M., Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors, Curr. Pharm. Des., 2010, 16, 3071-3088. 10.2174/138161210793292474Search in Google Scholar

[5] Goodson J.L., Nonapeptides and the evolutionary patterning of sociality, Prog. Brain Res., 2008, 170, 3-15. 10.1016/S0079-6123(08)00401-9Search in Google Scholar

[6] Brogden K.A., Ackermann M., McCray P.B., Jr., Tack B.F., Antimicrobial peptides in animals and their role in host defences, Int. J. Antimicrob. Agents, 2003, 22, 465-478. 10.1016/S0924-8579(03)00180-8Search in Google Scholar

[7] Zasloff M., Antimicrobial peptides of multicellular organisms, Nature, 2002, 415, 389-395. 10.1038/415389aSearch in Google Scholar PubMed

[8] Schrader M., Selle H., The process chain for peptidomic biomarker discovery, Dis. Markers, 2006, 22, 27-37. 10.1155/2006/174849Search in Google Scholar PubMed PubMed Central

[9] Martelli C., Iavarone F., Vincenzoni F., Cabras T., Manconi B., Desiderio C., Messana I., Castagnola M., Top-down peptidomics of bodily fluids, Peptidomics, 2013, 1, 47-64. 10.2478/ped-2014-0005Search in Google Scholar

[10] Finoulst I., Pinkse M., Van Dongen W., Verhaert P., Sample preparation techniques for the untargeted LC-MS-based discovery of peptides in complex biological matrices, J. Biomed. Biotechnol., 2011, 2011, 245291. 10.1155/2011/245291Search in Google Scholar PubMed PubMed Central

[11] Gruber C.W., Muttenthaler M., Discovery of defense- and neuropeptides in social ants by genomemining, PLoS ONE, 2012, DOI: 10.1371/journal.pone.0032559. 10.1371/journal.pone.0032559Search in Google Scholar PubMed PubMed Central

[12] Koehbach J., Attah A.F., Berger A., Hellinger R., Kutchan T.M., Carpenter E.J., Rolf M., Sonibare M.A., Moody J.O., Wong G.K., et al., Cyclotide discovery in Gentianales revisited-identification and characterization of cyclic cystine-knot peptides and their phylogenetic distribution in Rubiaceae plants, Biopolymers, 2013, 100, 438-452. 10.1002/bip.22328Search in Google Scholar PubMed PubMed Central

[13] Frith M.C., Forrest A.R., Nourbakhsh E., Pang K.C., Kai C., Kawai J., Carninci P., Hayashizaki Y., Bailey T.L., Grimmond S.M., The Abundance of Short Proteins in the Mammalian Proteome, PLoS Genet., 2006, DOI: 10.1371/journal.pgen.0020052. 10.1371/journal.pgen.0020052Search in Google Scholar PubMed PubMed Central

[14] Jin A.H., Dutertre S., Kaas Q., Lavergne V., Kubala P., Lewis R.J., Alewood P.F., Transcriptomic messiness in the venom duct of Conus miles contributes to conotoxin diversity, Mol. Cell. Proteomics, 2013, 12, 3824-3833. 10.1074/mcp.M113.030353Search in Google Scholar PubMed PubMed Central

[15] Schrader M., Schulz-Knappe P., Fricker L.D., Historical perspective of peptidomics, EuPA Open Proteom, 2014, 3, 171-182. 10.1016/j.euprot.2014.02.014Search in Google Scholar

[16] Cole A.M., Hong T., Boo L.M., Nguyen T., Zhao C., Bristol G., Zack J.A., Waring A.J., Yang O.O., Lehrer R.I., Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 1813-1818.12 10.1073/pnas.052706399Search in Google Scholar PubMed PubMed Central

[17] Bachmann B.O., Van Lanen S.G., Baltz R.H., Microbial genome mining for accelerated natural products discovery: is a renaissance in the making?, J. Ind. Microbiol. Biotechnol., 2014, 41, 175- 184. 10.1007/s10295-013-1389-9Search in Google Scholar PubMed PubMed Central

[18] Goecks J., Nekrutenko A., Taylor J., Team T.G., Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences, Genome Biol., 2010, http://genomebiology. com/2010/11/8/R86. 10.1186/gb-2010-11-8-r86Search in Google Scholar PubMed PubMed Central

[19] Okonechnikov K., Golosova O., Fursov M., UGENE-team, Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, 2012, 28, 1166-1167. 10.1093/bioinformatics/bts091Search in Google Scholar PubMed

[20] Lavergne V., Dutertre S., Jin A.H., Lewis R.J., Taft R.J., Alewood P.F., Systematic interrogation of the Conus marmoreus venom duct transcriptome with ConoSorter reveals 158 novel conotoxins and 13 new gene superfamilies, BMC Genomics, 2013, http://www.biomedcentral.com/1471- 2164/14/708. 10.1186/1471-2164-14-708Search in Google Scholar PubMed PubMed Central

[21] Misof B., Liu S., Meusemann K., Peters R.S., Donath A., Mayer C., Frandsen P.B., Ware J., Flouri T., Beutel R.G., et al., Phylogenomics resolves the timing and pattern of insect evolution, Science, 2014, 346, 763-767. Search in Google Scholar

[22] Christie A.E., Prediction of the peptidomes of Tigriopus californicus and Lepeophtheirus salmonis (Copepoda, Crustacea), Gen. Comp. Endocrinol., 2014, 201, 87-106. 10.1016/j.ygcen.2014.02.015Search in Google Scholar

[23] Christie A.E., Expansion of the Litopenaeus vannamei and Penaeus monodon peptidomes using transcriptome shotgun assembly sequence data, Gen. Comp. Endocrinol., 2014, 206, 235-254. 10.1016/j.ygcen.2014.04.015Search in Google Scholar

[24] Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J., Basic local alignment search tool, J. Mol. Biol., 1990, 215, 403-410. 10.1016/S0022-2836(05)80360-2Search in Google Scholar

[25] Artimo P., Jonnalagedda M., Arnold K., Baratin D., Csardi G., de Castro E., Duvaud S., Flegel V., Fortier A., Gasteiger E., et al., ExPASy: SIB bioinformatics resource portal, Nucleic Acids Res., 2012, 40, W597-W603. 10.1093/nar/gks400Search in Google Scholar PubMed PubMed Central

[26] Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Söding J., et al., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol. Syst. Biol., 2011, DOI: 10.1038/msb.2011.75. 10.1038/msb.2011.75Search in Google Scholar PubMed PubMed Central

[27] Petersen T.N., Brunak S., von Heijne G., Nielsen H., SignalP 4.0: discriminating signal peptides from transmembrane regions, Nat. Meth., 2011, 8, 785-786. 10.1038/nmeth.1701Search in Google Scholar PubMed

[28] Birney E., Clamp M., Durbin R., GeneWise and Genomewise, Genome Res., 2004, 14, 988-995. 10.1101/gr.1865504Search in Google Scholar PubMed PubMed Central

[29] Christie A.E., Neuropeptide discovery in Ixodoidea: An in silico investigation using publicly accessible expressed sequence tags, Gen. Comp. Endocrinol., 2008, 157, 174-185. 10.1016/j.ygcen.2008.03.027Search in Google Scholar PubMed

[30] Stewart M.J., Favrel P., Rotgans B., Wang T., Zhao M., Sohail M., O‘Connor W.A., Elizur A., Henry J., Cummins S.F., Neuropeptides encoded by the genomes of the Akoya pearl oyster Pinctata fucata and Pacific oyster Crassostrea gigas: a bioinformatic and peptidomic survey, BMC Genomics, 2014, http://www.biomedcentral. com/1471-2164/15/840. 10.1186/1471-2164-15-840Search in Google Scholar PubMed PubMed Central

[31] Wang S., Luo X., Zhang S., Yin C., Dou Y., Cai X., Identification of putative insulin-like peptides and components of insulin signaling pathways in parasitic platyhelminths by the use of genome-wide screening, FEBS J., 2014, 281, 877-893.13 10.1111/febs.12655Search in Google Scholar PubMed

[32] Liu C., Li H., In Silico Prediction of Post-translational Modifications, In: Yu B & Hinchcliffe M. (Eds.), Methods in Molecular Biology, 1st ed., Humana Press, New York, 2011. 10.1007/978-1-61779-176-5_20Search in Google Scholar PubMed

[33] Castellana N.E., Payne S.H., Shen Z., Stanke M., Bafna V., Briggs S.P., Discovery and revision of Arabidopsis genes by proteogenomics, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 21034-21038. 10.1073/pnas.0811066106Search in Google Scholar PubMed PubMed Central

[34] Andrews S.J., Rothnagel J.A., Emerging evidence for functional peptides encoded by short open reading frames, Nat. Rev. Genet., 2014, 15, 193-204. 10.1038/nrg3520Search in Google Scholar PubMed

[35] Pauli A., Valen E., Schier A.F., Identifying (non-)coding RNAs and small peptides: Challenges and opportunities, BioEssays, 2014, DOI: 10.1002/bies.201400103. 10.1002/bies.201400103Search in Google Scholar PubMed PubMed Central

[36] Bazzini A.A., Johnstone T.G., Christiano R., Mackowiak S.D., Obermayer B., Fleming E.S., Vejnar C.E., Lee M.T., Rajewsky N., Walther T.C., et al., Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation, EMBO J., 2014, 33, 981-993. 10.1002/embj.201488411Search in Google Scholar PubMed PubMed Central

[37] Slavoff S.A., Mitchell A.J., Schwaid A.G., Cabili M.N., Ma J., Levin J.Z., Karger A.D., Budnik B.A., Rinn J.L., Saghatelian A., Peptidomic discovery of short open reading frame–encoded peptides in human cells, Nat. Chem. Biol., 2013, 9, 59-64. 10.1038/nchembio.1120Search in Google Scholar PubMed PubMed Central

[38] Ma J., Ward C.C., Jungreis I., Slavoff S.A., Schwaid A.G., Neveu J., Budnik B.A., Kellis M., Saghatelian A., Discovery of human sORF-encoded polypeptides (SEPs) in cell lines and tissue, J. Proteome Res., 2014, 13, 1757-1765. 10.1021/pr401280wSearch in Google Scholar PubMed PubMed Central

[39] Lu Y., Zhuang Y., Liu J., Mining antimicrobial peptides from small open reading frames in Ciona intestinalis, J. Pept. Sci., 2014, 20, 25-29. 10.1002/psc.2584Search in Google Scholar PubMed

[40] Crappe J., Van Criekinge W., Trooskens G., Hayakawa E., Luyten W., Baggerman G., Menschaert G., Combining in silico prediction and ribosome profiling in a genome-wide search for novel putatively coding sORFs, BMC Genomics, 2013, http:// www.biomedcentral.com/1471-2164/14/648. 10.1186/1471-2164-14-648Search in Google Scholar PubMed PubMed Central

[41] Yang X., Tschaplinski T.J., Hurst G.B., Jawdy S., Abraham P.E., Lankford P.K., Adams R.M., Shah M.B., Hettich R.L., Lindquist E., et al., Discovery and annotation of small proteins using genomics, proteomics, and computational approaches, Genome Res., 2011, 21, 634-641. 10.1101/gr.109280.110Search in Google Scholar PubMed PubMed Central

[42] Kastenmayer J.P., Ni L., Chu A., Kitchen L.E., Au W.-C., Yang H., Carter C.D., Wheeler D., Davis R.W., Boeke J.D., et al., Functional genomics of genes with small open reading frames (sORFs) in S. cerevisiae, Genome Res., 2006, 16, 365-373. 10.1101/gr.4355406Search in Google Scholar PubMed PubMed Central

[43] Galindo M.I., Pueyo J.I., Fouix S., Bishop S.A., Couso J.P., Peptides Encoded by Short ORFs Control Development and Define a New Eukaryotic Gene Family, PLoS Biol., 2007, DOI: 10.1371/journal.pbio.0050106. 10.1371/journal.pbio.0050106Search in Google Scholar PubMed PubMed Central

[44] Oyama M., Kozuka-Hata H., Suzuki Y., Semba K., Yamamoto T., Sugano S., Diversity of Translation Start Sites May Define Increased Complexity of the Human Short ORFeome, Mol. Cell. Proteomics, 2007, 6, 1000-1006. 10.1074/mcp.M600297-MCP200Search in Google Scholar PubMed

[45] Hanada K., Akiyama K., Sakurai T., Toyoda T., Shinozaki K., Shiu S.-H., sORF finder: a program package to identify small open reading frames with high coding potential, Bioinformatics, 2010, 26, 399-400. 10.1093/bioinformatics/btp688Search in Google Scholar PubMed

[46] Hanada K., Zhang X., Borevitz J.O., Li W.-H., Shiu S.-H., A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection, Genome Res., 2007, 17, 632-640.14 10.1101/gr.5836207Search in Google Scholar PubMed PubMed Central

[47] Blankenberg D., Kuster G.V., Coraor N., Ananda G., Lazarus R., Mangan M., Nekrutenko A., Taylor J., Galaxy: A Web-Based Genome Analysis Tool for Experimentalists, Curr. Protoc. Mol. Biol, 2010, DOI: 10.1002/0471142727.mb1910s89. 10.1002/0471142727.mb1910s89Search in Google Scholar PubMed PubMed Central

[48] Giardine B., Riemer C., Hardison R.C., Burhans R., Elnitski L., Shah P., Zhang Y., Blankenberg D., Albert I., Taylor J., et al., Galaxy: A platform for interactive large-scale genome analysis, Genome Res., 2005, 15, 1451-1455. 10.1101/gr.4086505Search in Google Scholar PubMed PubMed Central

[49] Pruess M., Apweiler R., Bioinformatics Resources for In Silico Proteome Analysis, J. Biomed. Biotechnol., 2003, 4, 231-236. 10.1155/S1110724303209219Search in Google Scholar PubMed PubMed Central

[50] Le T.T., Lehnert S., Colgrave M.L., Neuropeptidomics applied to studies of mammalian reproduction, Peptidomics, 2013, 1, 1-13. 10.2478/ped-2013-0001Search in Google Scholar

[51] Romanova E.V., Dowd S.E., Sweedler J.V., Quantitation of endogenous peptides using mass spectrometry based methods, Curr. Opin. Chem. Biol., 2013, 17, 801-808. 10.1016/j.cbpa.2013.05.030Search in Google Scholar PubMed PubMed Central

[52] Hashempour H., Koehbach J., Daly N.L., Ghassempour A., Gruber C.W., Characterizing circular peptides in mixtures: sequence fragment assembly of cyclotides from a violet plant by MALDITOF/TOF mass spectrometry, Amino Acids, 2013, 44, 581-595. 10.1007/s00726-012-1376-xSearch in Google Scholar PubMed PubMed Central

[53] Ueberheide B.M., Fenyö D., Alewood P.F., Chait B.T., Rapid sensitive analysis of cysteine rich peptide venom components, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 6910-6915. 10.1073/pnas.0900745106Search in Google Scholar PubMed PubMed Central

[54] Góngora-Castillo E., Buell C.R., Bioinformatics challenges in de novo transcriptome assembly using short read sequences in the absence of a reference genome sequence, Nat. Prod. Rep., 2013, 30, 490- 500. 10.1039/c3np20099jSearch in Google Scholar PubMed

[55] Cahais V., Gayral P., Tsagkogeorga G., Melo-Ferreira J., Ballenghien M., Weinert L., Chiari Y., Belkhir K., Ranwez V., Galtier N., Reference-free transcriptome assembly in non-model animals from next-generation sequencing data, Mol. Ecol. Resour., 2012, 12, 834-845. 10.1111/j.1755-0998.2012.03148.xSearch in Google Scholar PubMed

[56] Jakubowski J.A., Keays D.A., Kelley W.P., Sandall D.W., Bingham J.P., Livett B.G., Gayler K.R., Sweedler J.V., Determining sequences and post-translational modifications of novel conotoxins in Conus victoriae using cDNA sequencing and mass spectrometry, J. Mass Spectrom., 2004, 39, 548- 557. 10.1002/jms.624Search in Google Scholar PubMed

[57] Ma M., Gard A.L., Xiang F., Wang J., Davoodian N., Lenz P.H., Malecha S.R., Christie A.E., Li L., Combining in silico transcriptome mining and biological mass spectrometry for neuropeptide discovery in the Pacific white shrimp Litopenaeus vannamei, Peptides, 2010, 31, 27-43. 10.1016/j.peptides.2009.10.007Search in Google Scholar PubMed PubMed Central

[58] Safavi-Hemami H., Hu H., Gorasia D.G., Bandyopadhyay P.K., Veith P.D., Young N.D., Reynolds E.C., Yandell M., Olivera B.M., Purcell A.W., Combined proteomic and transcriptomic interrogation of the venom gland of Conus geographus uncovers novel components and functional compartmentalization, Mol. Cell. Proteomics, 2014, 13, 938-953. 10.1074/mcp.M113.031351Search in Google Scholar PubMed PubMed Central

[59] Kersten R.D., Yang Y.L., Xu Y., Cimermancic P., Nam S.J., Fenical W., Fischbach M.A., Moore B.S., Dorrestein P.C., A mass spectrometry-guided genome mining approach for natural product peptidogenomics, Nat. Chem. Biol., 2011, 7, 794-802. 10.1038/nchembio.684Search in Google Scholar PubMed PubMed Central

[60] Mohimani H., Kersten R.D., Liu W.T., Wang M., Purvine S.O., Wu S., Brewer H.M., Pasa-Tolic L., Bandeira N., Moore B.S., et al., Automated genome mining of ribosomal peptide natural products, ACS Chem. Biol., 2014, 9, 1545-1551.15 10.1021/cb500199hSearch in Google Scholar PubMed PubMed Central

[61] Mohimani H., Liu W.T., Kersten R.D., Moore B.S., Dorrestein P.C., Pevzner P.A., NRPquest: Coupling Mass Spectrometry and Genome Mining for Nonribosomal Peptide Discovery, J. Nat. Prod., 2014, 77, 1902-1909. 10.1021/np500370cSearch in Google Scholar PubMed PubMed Central

[62] Medema M.H., Paalvast Y., Nguyen D.D., Melnik A., Dorrestein P.C., Takano E., Breitling R., Pep2Path: Automated Mass Spectrometry-Guided Genome Mining of Peptidic Natural Products, PLoS Comput. Biol., 2014, DOI: 10.1371/journal. pcbi.1003822. Search in Google Scholar

[63] Clark R.J., Fischer H., Nevin S.T., Adams D.J., Craik D.J., The synthesis, structural characterization, and receptor specificity of the alpha-conotoxin Vc1.1, J. Biol. Chem., 2006, 281, 23254-23263. 10.1074/jbc.M604550200Search in Google Scholar PubMed

[64] Koehbach J., O‘Brien M., Muttenthaler M., Miazzo M., Akcan M., Elliott A.G., Daly N.L., Harvey P.J., Arrowsmith S., Gunasekera S., et al., Oxytocic plant cyclotides as templates for peptide G protein-coupled receptor ligand design, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 21183-21188. 10.1073/pnas.1311183110Search in Google Scholar PubMed PubMed Central

[65] Ladoukakis E., Pereira V., Magny E., Eyre-Walker A., Couso J.P., Hundreds of putatively functional small open reading frames in Drosophila, Genome Biol., 2011, http://genomebiology. com/2011/12/11/R118. 10.1186/gb-2011-12-11-r118Search in Google Scholar PubMed PubMed Central

[66] Clamp M., Fry B., Kamal M., Xie X., Cuff J., Lin M.F., Kellis M., Lindblad-Toh K., Lander E.S., Distinguishing protein-coding and noncoding genes in the human genome, Proc. Natl. Acad. Sci. U.S.A., 2007, 104, 19428-19433. 10.1073/pnas.0709013104Search in Google Scholar PubMed PubMed Central

[67] Koehbach J., Stockner T., Bergmayr C., Muttenthaler M., Gruber C.W., Insights into the molecular evolution of oxytocin receptor ligand binding, Biochem. Soc. Trans., 2013, 41, 197-204. 10.1042/BST20120256Search in Google Scholar PubMed PubMed Central

[68] Gruber C.W., Physiology of invertebrate oxytocin and vasopressin neuropeptides, Exp. Physiol., 2014, 99, 55-61. 10.1113/expphysiol.2013.072561Search in Google Scholar PubMed PubMed Central

[69] Ingolia N.T., Ghaemmaghami S., Newman J.R.S., Weissman J.S., Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling, Science, 2009, 324, 218-223. 10.1126/science.1168978Search in Google Scholar PubMed PubMed Central

[70] Guttman M., Russell P., Ingolia N.T., Weissman J.S., Lander E.S., Ribosome Profiling Provides Evidence that Large Noncoding RNAs Do Not Encode Proteins, Cell, 2013, 154, 240-251. 10.1016/j.cell.2013.06.009Search in Google Scholar PubMed PubMed Central

[71] Tamura K., Stecher G., Peterson D., Filipski A., Kumar S., MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Mol. Biol. Evol., 2013, 30, 2725-2729. 10.1093/molbev/mst197Search in Google Scholar PubMed PubMed Central

[72] Edgar R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 2004, 32, 1792-1797. 10.1093/nar/gkh340Search in Google Scholar PubMed PubMed Central

[73] Sigrist C.J.A., de Castro E., Cerutti L., Cuche B.A., Hulo N., Bridge A., Bougueleret L., Xenarios I., New and continuing developments at PROSITE, Nucleic Acids Res., 2013, 41, D344-D347. 10.1093/nar/gks1067Search in Google Scholar PubMed PubMed Central

[74] Rawlings N.D., Waller M., Barrett A.J., Bateman A., MEROPS: the database of proteolytic enzymes, their substrates and inhibitors, Nucleic Acids Res., 2014, 42, D503-D509. 10.1093/nar/gkt953Search in Google Scholar PubMed PubMed Central

[75] Stanke M., Keller O., Gunduz I., Hayes A., Waack S., Morgenstern B., AUGUSTUS: ab initio prediction of alternative transcripts, Nucleic Acids Res., 2006, 34, W435-W439. 10.1093/nar/gkl200Search in Google Scholar PubMed PubMed Central

[76] Lin M.F., Jungreis I., Kellis M., PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions, Bioinformatics, 2011, 27, i275-i282.16 10.1093/bioinformatics/btr209Search in Google Scholar PubMed PubMed Central

[77] Ferrè F., Clote P., DiANNA: a web server for disulfide connectivity prediction, Nucleic Acids Res., 2005, 33, W230-W232. 10.1093/nar/gki412Search in Google Scholar PubMed PubMed Central

[78] Xue Y., Liu Z., Cao J., Ma Q., Gao X., Wang Q., Jin C., Zhou Y., Wen L., Ren J., GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection, Protein Eng. Des. Sel., 2011, 24, 255-260. 10.1093/protein/gzq094Search in Google Scholar PubMed

[79] Consortium T.U., Activities at the Universal Protein Resource (UniProt), Nucleic Acids Res., 2014, 42, D191-D198.17 10.1093/nar/gkt1140Search in Google Scholar PubMed PubMed Central

Received: 2014-12-1
Accepted: 2015-2-11
Published Online: 2015-3-31

© 2015 Johannes Koehbach, Kathryn A.V. Jackson

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 5.12.2023 from https://www.degruyter.com/document/doi/10.1515/ped-2015-0002/html
Scroll to top button