Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 20, 2016

Serum metal evaluation in a small cohort of Amyotrophic Lateral Sclerosis patients reveals high levels of thiophylic species

  • Stefano De Benedetti , Giorgio Lucchini , Alessandro Marocchi , Silvana Penco , Christian Lunetta , Stefania Iametti , Elisabetta Gianazza and Francesco Bonomi
From the journal Peptidomics

Abstract

Amyotrophic Lateral Sclerosis (ALS) has often been associated with improper/altered metal metabolism. Analysis of thiophylic metals in serum from a small and geographically restricted cohort of ALS patients indicates contents of Pb and Ni much higher in patients than in controls (Ni, 5-fold; Pb, 2-fold). Se levels are also higher in the patients’ group, which has instead lower As levels than controls. Thiophylic metals may impair biogenesis of FeS clusters or substitute for iron, even in folded proteins; Se may non-functionally replace S. Thus, improper assembly/ function of FeS proteins could represent another possible issue to be considered in ALS pathogenesis.

References

[1] Chiò A., Logroscino G., Traynor B.J., Collins J., Simeone J.C., Goldstein L.A., White L.A., Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature, Neuroepidemiology, 2013, 41, 118-30. 10.1159/000351153Search in Google Scholar

[2] Mitchell J.D., Borasio G.D., Amyotrophic lateral sclerosis, Lancet, 2007, 369, 2031-2041. 10.1016/S0140-6736(07)60944-1Search in Google Scholar

[3] McLaughlin R.L., Vajda A., Hardiman O., Heritability of Amyotrophic Lateral Sclerosis: Insights From Disparate Numbers., JAMA Neurol Published online June 01, 2015. doi:10.1001/jamaneurol.2014.4049. 10.1001/jamaneurol.2014.4049Search in Google Scholar PubMed

[4] Rosen D.R., Siddique T., Patterson D., Figlewicz D.A., Sapp P., Hentati, A., Donaldson D., Goto J., O’Regan J.P., Deng H.X., et al., Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature, 1993, 362, 59–62. 10.1038/364362c0Search in Google Scholar PubMed

[5] Sreedharan J., Blair I.P., Tripathi V.B., Hu X., Vance C., Rogelj B., Ackerley S., Durnall J.C., Williams K.L., Buratti E., et al., TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis, Science, 2008, 319, 1668–1672. 10.1126/science.1154584Search in Google Scholar PubMed PubMed Central

[6] Vance C., Rogelj B., Hortobgàyi T., De Vos K.J., Nishimura A.L., Sreedharan J., Hu X., Smith B., Ruddy D., Wright P., et al., Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6, Science, 2009, 323, 1208–1211. 10.1126/science.1165942Search in Google Scholar PubMed PubMed Central

[7] DeJesus-Hernandez M., Mackenzie I.R., Boeve B.F., Boxer A.L., Baker M., Rutherford N.J., Nicholson A.M., Finch N.A., Flynn H., Adamson J., et al., Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS, Neuron, 2011, 72, 245–456. 10.1016/j.neuron.2011.09.011Search in Google Scholar PubMed PubMed Central

[8] Renton A.E., Majounie E., Waite A., Simón-Sánchez J., Rollinson S., Gibbs J.R., Schymick J.C., Laaksovirta H., van Swieten J.C., Myllykangas L., et al., A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD, Neuron, 2011, 72, 257–268. 10.1016/j.neuron.2011.09.010Search in Google Scholar PubMed PubMed Central

[9] Brooks B.R., Miller R.G., Swash M., Munsat T.L., World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis, Amyotroph Lateral Scler Other Motor Neuron Disord, 2000, 1(5), 293-9. 10.1080/146608200300079536Search in Google Scholar PubMed

[10] Crichton R.R., Ward R.J., Metal-based neurodegeneration. From molecular mechanisms to therapeutic strategies, John Wiley and Sons, pp 227, 2006. 10.1002/0470022574Search in Google Scholar

[11] Hadzhieva M., Kirches E., Mawrin C., Review: iron metabolism and the role of iron in neurodegenerative disorders, Neuropathol Appl Neurobiol, 2014, 40(3), 240-57. 10.1111/nan.12096Search in Google Scholar

[12] Carrí M.T., Ferri A., Cozzolino M., Calabrese L., Rotilio G., Neurodegeneration in amyotrophic lateral sclerosis: the role of oxidative stress and altered homeostasis of metals, Brain Res Bull, 2003, 61(4), 365-74. 10.1016/S0361-9230(03)00179-5Search in Google Scholar

[13] Goodall E.F., Haque M.S., Morrison K.E., Increased serum ferritin levels in amyotrophic lateral sclerosis (ALS) patients, J Neurol, 2008, 255(11),1652-6. 10.1007/s00415-008-0945-0Search in Google Scholar PubMed

[14] Nadjar Y., Gordon P., Corcia P., Bensimon G., Pieroni L., Meininger V., Salachas F., Elevated serum ferritin is associated with reduced survival in amyotrophic lateral sclerosis, PLoS One, 2012, 7(9), e45034. 10.1371/journal.pone.0045034Search in Google Scholar PubMed PubMed Central

[15] Roos P.M., Lierhagen S., Flaten T.P., Syversen T., Vesterberg O., Nordberg M., Manganese in cerebrospinal fluid and blood plasma of patients with amyotrophic lateral sclerosis, Exp Biol Med (Maywood), 2012, 237(7), 803-10. 10.1258/ebm.2012.011396Search in Google Scholar PubMed

[16] Buscema M., Penco S., Grossi E., A Novel Mathematical Approach to Define the Genes/SNPs Conferring Risk or Protection in Sporadic Amyotrophic Lateral Sclerosis Based on Auto Contractive Map Neural Networks and Graph Theory, Neurol Res Int., 2012, 478560. 10.1155/2012/478560Search in Google Scholar PubMed PubMed Central

[17] ISTISAN, Alimonti A., Bocca B., Mattei D., Pino A., 2010. Report 10/22: Biomonitoraggio della popolazione italiana per l’esposizione ai metalli: valori di riferimento 1990–2009 Search in Google Scholar

[Biomonitoring of Italian population for metals exposure: reference values 1990–2009]. ISSN: 1123-3117. Istutito Superiore della Sanità Search in Google Scholar

[Italian Superior Health Institute], Available at: http://www.iss.it/ binary/publ/ cont/10ventidueWEB.pdf. Accessed May 2015. Search in Google Scholar

[18] Ingre C., Roos P.M., Piehl F., Kamel F., Fang F., Risk factors for amyotrophic lateral sclerosis, Clin Epidemiol, 2015, 7, 181-93. 10.2147/CLEP.S37505Search in Google Scholar PubMed PubMed Central

[19] Penco S., Lunetta C., Mosca L., Maestri E., Avemaria F., Tarlarini C., Patrosso M.C., Marocchi A., Corbo M., Phenotypic Heterogeneity in a SOD1 G93D Italian ALS Family: An Example of Human Model to Study a Complex Disease, J Mol Neurosci, 2011, 44, 25–30. 10.1007/s12031-010-9480-4Search in Google Scholar PubMed

[20] Chio` A., Calvo A., Moglia C., Mazzini L., Mora G., PARALS study group, Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study, J Neurol Neurosurg Psychiatry, 2011 , 82, 740-746. 10.1136/jnnp.2010.235952Search in Google Scholar PubMed

[21] Marescotti P., Azzali E., Servida D., Carbone C., Grieco G., de Capitani L., Lucchetti G., Mineralogical and geochemical spatial analyses of a waste-rock dump at the Libiola Fe-Cu sulphide mine (Eastern Liguria, Italy), Environmental Earth Sciences, 2010, 61 (1), 187-199. 10.1007/s12665-009-0335-7Search in Google Scholar

[22] Oh S.S., Kim E.A., Lee S.W., Kim M.K., Kang S.K., A case of amyotrophic lateral sclerosis in electronic parts manufacturing worker exposed to lead, Neurotoxicology, 2007, 28, 324–327. 10.1016/j.neuro.2006.12.004Search in Google Scholar PubMed

[23] Fang F., Kwee L.C., Allen K.D., Umbach D.M., Ye W., Watson M., Keller J., Oddone E.Z., Sandler D.P., Schmidt S., et al., Association between blood lead and the risk of amyotrophic lateral sclerosis, Am. J. Epidemiol, 2010, 171, 1126–1133. 10.1093/aje/kwq063Search in Google Scholar PubMed PubMed Central

[24] Vinceti M., Guidetti D., Bergomi M., Caselgrandi E., Vivoli R., Olmi M., Rinaldi L., Rovesti S., Solime F., Lead, cadmium, and selenium in the blood of patients with sporadic amyotrophic lateral sclerosis, Ital. J. Neurol. Sci., 1997, 18, 87–92. 10.1007/BF01999568Search in Google Scholar PubMed

[25] Roos P.M., Vesterberg O., Syversen T., Peder Flaten T., Nordberg M., Metal concentrations in cerebrospinal fluid and blood plasma from patients with amyotrophic lateral sclerosis, Biol. Trace Elem. Res, 2013, 151, 159–170. 10.1007/s12011-012-9547-xSearch in Google Scholar PubMed

[26] Iametti S., Uhlmann H., Sala N., Bernhardt R., Ragg E.M., Bonomi F., Reversible, non-denaturing metal substitution in bovine adrenodoxin and spinach ferredoxin and the different reactivity of Search in Google Scholar

[2Fe-2S]-cluster-containing proteins, Eur. J. Biochem., 1996, 239, 818-826. 10.1111/j.1432-1033.1996.0818u.xSearch in Google Scholar PubMed

[27] Iametti S., Uhlmann H., Ragg E.M., Sala N., Grinberg A., Beckert V., Bernhardt R., Bonomi F., Cluster iron substitution is related to structural and functional features of adrenodoxin mutants and to their redox state, Eur. J. Biochem., 1998, 251, 673-681 10.1046/j.1432-1327.1998.2510673.xSearch in Google Scholar PubMed

[28] Lorusso M., Cocco R., Sardanelli A.M., Minuto M., Bonomi F., Papa S., Interaction of zinc ions with the bovine mitochondrial b-c1 complex, Eur. J. Biochem., 1991, 197, 555-561. 10.1111/j.1432-1033.1991.tb15944.xSearch in Google Scholar PubMed

[29] Bonomi F., Iametti S., Kurtz D.M., Ragg E.M., Richie K.A., Direct metal ion substitution at the Search in Google Scholar

[M(SCys)4]2- site of rubredoxin, J. Biol. Inorg. Chem., 1998, 3, 595-605. 10.1007/s007750050272Search in Google Scholar

[30] Valko M., Morris H., Cronin M.T.D., Metals, Toxicity and Oxidative Stress, Current Medicinal Chemistry, 2005, 12, 1161-1208. 10.2174/0929867053764635Search in Google Scholar PubMed

[31] He M., Lu Y., Xu S., Mao L., Zhang L., Duan W., Liu C., Pi H., Zhang Y., Zhong M., Yu Z., Zhou Z., MiRNA-210 modulates a nickel-induced cellular energy metabolism shift by repressing the iron-sulfur cluster assembly proteins ISCU1/2 in Neuro-2a cells, Cell Death Dis., 2014, 5, e1090 10.1038/cddis.2014.60Search in Google Scholar PubMed PubMed Central

[32] Pierik A.J., Netz D.J., Lill R., Analysis of iron-sulfur protein maturation in eukaryotes. Nat. Protoc., 2009, 4, 753-766. 10.1038/nprot.2009.39Search in Google Scholar

[33] Lill R., Dutkiewicz R., Elsässer H.P., Hausmann A., Netz D.J., Pierik A.J., Stehling O., Urzica E., Mühlenhoff U., Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes, Biochim. Biophys. Acta, 2006, 1763, 652-667. 10.1016/j.bbamcr.2006.05.011Search in Google Scholar

[34] Shi H., Shi X., Liu K.J., Oxidative mechanism of arsenic toxicity and carcinogenesis, Mol Cell Biochem, 2004, 255(1-2), 67-78. 10.1023/B:MCBI.0000007262.26044.e8Search in Google Scholar

[35] He X. and Ma Q., Induction of Metallothionein I by Arsenic via Metal-activated Transcription Factor 1, Jour of Biol Chem, 2009, 284(19), 12609-12621. 10.1074/jbc.M901204200Search in Google Scholar

[36] Vinceti M., Solovyev N., Mandrioli J., Crespi C.M., Bonvicini F., Arcolin E., Georgoulopoulou E., Michalke B., Cerebrospinal fluid of newly diagnosed amyotrophic lateral sclerosis patients exhibits abnormal levels of selenium species including elevated selenite, NeuroToxicology, 2013, 38, 25–32. 10.1016/j.neuro.2013.05.016Search in Google Scholar

[37] Hozumi I., Hasegawa T., Honda A., Ozawa K., Hayashi Y., Hashimoto K., Yamada M., Koumura A., Sakurai T., Kimura A., et al., Patterns of levels of biological metals in CSF differ among neurodegenerative diseases, J Neurol Sci, 2011, 15, 303(1-2):95-9. 10.1016/j.jns.2011.01.003Search in Google Scholar

[38] Hadzhieva M., Kirches E., Wilisch-Neumann A., Pachow D., Wallesch M., Schoenfeld P., Paege I., Vielhaber S., Petri S., Keilhoff G., et al., Dysregulation of iron protein expression in the G93A model of amyotrophic lateral sclerosis, Neuroscience, 2013, 29;230, 94-101. 10.1016/j.neuroscience.2012.11.021Search in Google Scholar

[39] Veyrat-Durebex C., Corcia P., Mucha A., Benzimra S., Mallet C., Gendrot C., Moreau C., Devos D., Piver E., Pagès J.C., et al., Iron metabolism disturbance in a French cohort of ALS patients, Biomed Res Int, 2014, 2014:485723. 10.1155/2014/485723Search in Google Scholar

[40] Nies D.H., Efflux-mediated heavy metal resistance in prokaryotes, FEMS Microbiol., 2003, Rev. 27, 313–339. 10.1016/S0168-6445(03)00048-2Search in Google Scholar

[41] Hashimoto K., Hayashi Y., Watabe K., Inuzuka T., Hozumi I., Metallothionein-III prevents neuronal death and prolongs life span in Amyotrophic Lateral Sclerosis model mice, Neuroscience, 2011, 189, 293-298. 10.1016/j.neuroscience.2011.05.034Search in Google Scholar PubMed

Received: 2015-7-28
Accepted: 2015-10-16
Published Online: 2016-1-20

© 2015 Stefano De Benedetti et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 10.12.2023 from https://www.degruyter.com/document/doi/10.1515/ped-2015-0004/html
Scroll to top button