Abstract
The scaffold protein IscU is involved in the assembly/transfer of FeS clusters. IscU exists in both open and closed conformation. The clusterless open conformation of IscU adheres to the hydrophobic surface of polystyrene nanobeads, as observed for other proteins. Increased accessibility of the ligand cysteines in bound IscU facilitates assembly of a 2Fe2S cluster, and the cluster-bearing structured form of IscU does not interact with the nanobeads, thus ensuring turnover. The dependence of accelerated cluster assembly on the nanobeads concentration pointed to steric and crowding effects as for promoting cluster formation, and confirms the requirement for structural flexibility of IscU .
References
[1] Ciesielski S.J., Schilke B.A., Osipiuk J., Bigelow L., Mulligan R., Majewska J., Joachimiak A., Marszalek J., Craig E.A., Dutkiewicz R., Interaction of J-protein co-chaperone Jac1 with Fe-S scaffold Isu is indispensable in vivo and conserved in evolution, J. Mol. Biol., 2012, 417, 1-12. 10.1016/j.jmb.2012.01.022Search in Google Scholar PubMed PubMed Central
[2] Johnson D.C., Dean D.R., Smith A.D., Johnson M.K., Structure, function and formation of biological iron-sulfur clusters, Annu. Rev. Biochem., 2005, 78, 247–281. 10.1146/annurev.biochem.74.082803.133518Search in Google Scholar PubMed
[3] Rouault T.A., Tong W.H., Iron–sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat. Rev. Mol. Cell Biol., 2005, 6, 345–351. 10.1038/nrm1620Search in Google Scholar PubMed
[4] Ayala-Castro C., Saini A., Outten F.W., Fe–S cluster assembly pathways in bacteria, Microbiol. Mol. Biol. Rev., 2008, 72, 110–125. 10.1128/MMBR.00034-07Search in Google Scholar PubMed PubMed Central
[5] Raulfs E.C., O’Carroll I.P., Dos Santos P.C., Unciuleac M.-C., Dean D.R., In vivo iron sulfur cluster formation, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 8591-8596. 10.1073/pnas.0803173105Search in Google Scholar PubMed PubMed Central
[6] Chandramouli K., Unciuleac M.C., Naik S., Dean D.R., Huynh B.H., Johnson M.K., Formation and properties of [4Fe-4S] clusters on the IscU scaffold protein. Biochemistry, 2007, 46, 6804-6811. 10.1021/bi6026659Search in Google Scholar PubMed
[7] Unciuleac M.C., Chandramouli K., Naik S., Mayer S., Huynh B.H., Johnson M.K., Dean D.R., In vitro activation of apo-aconitase using a [4Fe-4S] cluster-loaded form of the IscU Search in Google Scholar
[Fe-S] cluster scaffolding protein. Biochemistry, 2007, 46, 6812-6821. 10.1021/bi6026665Search in Google Scholar PubMed
[8] Shakamuri P., Zhang B., Johnson M.K., Monothiol glutaredoxins function in storing and transporting [Fe2S2] clusters assembled on IscU scaffold proteins, J. Am. Chem. Soc., 2012, 134, 15213-15216. 10.1021/ja306061xSearch in Google Scholar PubMed PubMed Central
[9] Bonomi F., Iametti S., Morleo A., Ta D.T., Vickery L.E., Studies on the mechanism of catalysis of iron-sulfur cluster transfer from IscUSearch in Google Scholar
[2Fe2S] by HscA/HscB chaperones, Biochemistry, 2011, 50, 9641-9650. 10.1021/bi201123zSearch in Google Scholar PubMed
[10] Bonomi F., Iametti S., Morleo A., Ta D.T., Vickery L.E., Facilitated transfer of IscU-[2Fe2S] clusters by chaperone-mediated ligand exchange, Biochemistry, 2008, 47, 12795-12801. 10.1021/bi801565jSearch in Google Scholar PubMed
[11] Bonomi F., Iametti S., Ta D.T., Vickery L.E., Multiple turnover transfer of [2Fe2S] clusters by the iron-sulfur cluster assembly scaffold proteins IscU and IscA, J. Biol. Chem., 2005, 280, 29513-29518. 10.1074/jbc.M504344200Search in Google Scholar PubMed
[12] Markley J.L., Kim J.H., Dai Z.Q., Bothe J.R., Cai K., Frederick R.O., Tonelli M., Metamorphic protein IscU alternates conformations in the course of its role as the scaffold protein for iron-sulfur cluster biosynthesis and delivery, FEBS Letters, 2013, 587, 1172-1179. 10.1016/j.febslet.2013.01.003Search in Google Scholar PubMed PubMed Central
[13] Yan R., Kelly G., Pastore A., The scaffold protein IscU retains a structured conformation in the Fe-S cluster assembly complex, Chem. Biochem., 2014, 15, 1682-1686. 10.1002/cbic.201402211Search in Google Scholar PubMed
[14] Miriani M., Eberini I., Iametti S., Ferranti P., Sensi C., Bonomi F., Unfolding of beta-lactoglobulin on the surface of polystyrene nanoparticles: Experimental and computational approaches, Proteins 2014, 82, 1272–1282. 10.1002/prot.24493Search in Google Scholar PubMed
[15] Miriani M., Iametti S., Kurtz D.M., Bonomi F., Rubredoxin refolding on nanostructured hydrophobic surfaces: Evidence for a new type of biomimetic chaperones, Proteins 2014, 82, 3154-3162. 10.1002/prot.24675Search in Google Scholar PubMed
[16] Kim J.H., Bothe J.R., Alderson T.R., Markley J.L., Tangled web of interactions among proteins involved in iron-sulfur cluster assembly as unraveled by NMR, SAXS, chemical crosslinking, and functional studies, Biochim. Biophys. Acta, 2015, 1853, 1416-1428. 10.1016/j.bbamcr.2014.11.020Search in Google Scholar PubMed PubMed Central
[17] Maio N., Rouault T.A., Iron–sulfur cluster biogenesis in mammalian cells: New insights into the molecular mechanisms of cluster delivery, Biochim. Biophys. Acta, 2015, 1853, 1493-1512. 10.1016/j.bbamcr.2014.09.009Search in Google Scholar PubMed PubMed Central
[18] Hoff K.G., Silberg J.J., Vickery L.E., Interaction of the iron-sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 7790-7795. 10.1073/pnas.130201997Search in Google Scholar PubMed PubMed Central
[19] Morleo A., Bonomi F., Iametti S., Huang V.W., Kurtz D.M., Iron-nucleated folding of a metalloprotein in high urea: resolution of metal binding and protein folding events, Biochemistry, 2010, 49, 6627–6634. 10.1021/bi100630tSearch in Google Scholar PubMed PubMed Central
© 2015 Alberto Barbiroli et al.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.