Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 20, 2016

Functional investigation of Bacillus subtilis YrkF’s involvement in sulfur transfer reactions

  • Hannah L. Martin , Katherine A. Black and Patricia C. Dos Santos
From the journal Peptidomics


Sulfur incorporation into the molybdenum cofactor (Moco) in the Gram-negative bacterium Escherichia coli involves six enzymes. The initial reaction includes the cysteine desulfurase IscS, the sulfurtransferase TusA, and the rhodanese domaincontaining protein YnjE. The Gram-positive bacterium Bacillus subtilis contains no direct homologs for IscS, but rather four distinct cysteine desulfurases (YrvO, NifS, NifZ, SufS) and YrkF, a two-domain rhodanese protein with an N-terminal domain similar to TusA. Bioinformatic analysis was used to identify potential enzymes involved in the B. subtilis Moco thiolation pathway and in vitro reactions demonstrated that YrkF can accept sulfur from and enhance the activity of YrvO.


[1] Schwarz G., Mendel R.R., Ribbe M.W., Molybdenum cofactors, enzymes and pathways, Nature, 2009, 460, 839-847. 10.1038/nature08302Search in Google Scholar

[2] Rajagopalan K.V., Johnson J.L., Hainline B.E., The pterin of the molybdenum cofactor, Federation Proceedings, 1982, 41 (9), 2608-2612. Search in Google Scholar

[3] Hille R., The mononuclear molybdenum enzymes, Chemical Reviews, 1996, 96 (7), 2757-2816. 10.1021/cr950061tSearch in Google Scholar

[4] Leimkühler S., The Biosynthesis of the Molybdenum Cofactor in Escherichia coli and Its Connection to FeS Cluster Assembly and the Thiolation of tRNA, Advances in Biology, 2014, vol. 2014, Article 808569. 10.1155/2014/808569Search in Google Scholar

[5] Hille R., Nishino T., Bittner F., Molybdenum enzymes in higher organisms, Coord. Chem. Review, 2011, 255, 1179-1205. 10.1016/j.ccr.2010.11.034Search in Google Scholar

[6] Wuebbens M.M., Rajagopalan K. V., Structural characterization of a molybdopterin precursor, The Journal of Biological Chemistry, 1993, 268 (18), 13493-13498. 10.1016/S0021-9258(19)38676-4Search in Google Scholar

[7] Llamas A., Mendel R.R., Schwarz G., Synthesis of adenylated molybdopterin: an essential step for molybdenum insertion, The Journal of Biological Chemistry, 2004, 279 (53), 55241-55246. 10.1074/jbc.M409862200Search in Google Scholar

[8] Leimkühler S., Wuebbens M.M., Rajagopalan K.V., The history of the discovery of the molybdenum cofactor and novel aspects of its biosynthesis in bacteria, Coord. Chem. Rev., 2011, 255, 1129-1144. 10.1016/j.ccr.2010.12.003Search in Google Scholar

[9] Pitterle D.M., Johnson J.L., Rajagopalan K.V., In vitro synthesis of molybdenum from precursor Z using purified converting factor. Role of protein-bound Sulfur in formation of the dithiolene, The Journal of Biological Chemistry, 1993, 268 (18), 13506-13509. 10.1016/S0021-9258(19)38678-8Search in Google Scholar

[10] Dahl J.U., Radon C., Bühning M., Nimtz M., Leichert L., Denis Y., Jourlin-Castelli C., Iobbi-Nivol C., Mejean V., Leimkühler S., The Sulfur carrier protein TusA has a pleiotropic role in Escherichia coli that also affects molybdenum cofactor biosynthesis, The Journal of Biological Chemistry, 2013, 288, 5426-5442. 10.1074/jbc.M112.431569Search in Google Scholar PubMed PubMed Central

[11] Leimkühler S., Rajagopalan K.V., A sulfurtransferase is required in the transfer of cysteine sulfur in the in vitro synthesis of molybdopterin from precursor Z in Escherichia coli, The Journal of Biological Chemistry, 2001, 276 (25), 22024-22031. 10.1074/jbc.M102072200Search in Google Scholar PubMed

[12] Dahl J.U., Urban A., Bolte A., Sriyabhaya P., Donahue J., Nimtz M., Larson T.J., Leimkühler S., The identification of a novel protein involved in molybdenum cofactor biosynthesis in Escherichia coli, The Journal of Biological Chemistry, 2011, 286 (41), 35801-35812. 10.1074/jbc.M111.282368Search in Google Scholar PubMed PubMed Central

[13] Leimkühler S., Wuebbens M.M., Rajagopalan K.V., Characterization of Escherichia coli MoeB and its involvement in the activation of molybdopterin synthase for the biosynthesis of the molybdenum cofactor, The Journal of Biological Chemistry, 2001, 276 (37), 34965-34701. 10.1074/jbc.M102787200Search in Google Scholar PubMed

[14] Gutzke G., Fischer B., Mendel R. R., Schwarz G. Thiocarboxylation of molybdopterin synthase provides evidence for the mechanism of dithiolene formation in metal-binding pterins. The Journal of Biological Chemistry, 2001, 276, 36268–36274. 10.1074/jbc.M105321200Search in Google Scholar PubMed

[15] Mendel R.R., Leimkühler S.L. The biosynthesis of the molybdenum cofactors. Journal of Biological Inorganic. Chemistry, 2015, 20, 2, 337-347. 10.1007/s00775-014-1173-ySearch in Google Scholar PubMed

[16] Black K.A., Dos Santos P.C., Abbreviated Pathway for Biosynthesis of 2-Thiouridine in Bacillus subtils, Journal of Bacteriology, 2015, 197, 1952-1962. 10.1128/JB.02625-14Search in Google Scholar PubMed PubMed Central

[17] Selbach B., Earles E., Dos Santos P.C., Kinetic analysis of the bisubstrate cysteine desulfurase SufS from Bacillus subtilis, Biochemistry, 2010, 49 (40), 8794-8802. 10.1021/bi101358kSearch in Google Scholar PubMed

[18] Rajakovich L.J., Tomlinson J., Dos Santos P.C., Functional analysis of Bacillus subtilis genes involved in the biosynthesis of 4-thiouridine in tRNA, 2012, Journal of Bacteriology 194, 4933-4940. 10.1128/JB.00842-12Search in Google Scholar PubMed PubMed Central

[19] Black K.A., Dos Santos P.C., Shared-intermediates in the biosynthesis of thio-cofactors: Mechanism and functions of cysteine desulfurases and sulfur acceptors, Biochimica et Biophysica Acta, 2015, 1853, 1470-1480. 10.1016/j.bbamcr.2014.10.018Search in Google Scholar PubMed

[20] Ikeuchi Y., Shigi N., Kato J., Nishimura A., Suzuki T., Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions, Mol Cell, 2006, 21, 97-108. 10.1016/j.molcel.2005.11.001Search in Google Scholar PubMed

[21] Lauhon CT., Requirement for IscS in biosynthesis of all thionucleosides in Escherichia coli. Journal of Bacteriology, 2002, 184, 6820-6829. 10.1128/JB.184.24.6820-6829.2002Search in Google Scholar PubMed PubMed Central

[22] Zheng L., White R.H., Cash V.L., Jack R.F. Dean D.R., Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis, Proc Natl Acad Sci USA, 1993, 90, 2754-2758. 10.1073/pnas.90.7.2754Search in Google Scholar PubMed PubMed Central

[23] Selbach BP, Chung AH, Scott AD, George SJ, Cramer SP, Dos Santos PC. Fe-S Cluster Biogenesis in Gram-Positive Bacteria: SufU Is a Zinc-Dependent Sulfur Transfer Protein. Biochemistry, 2014, 53, 152-160. 10.1021/bi4011978Search in Google Scholar PubMed PubMed Central

[24] Dos Santos P.C. Fe-S assembly in Gram-positive bacteria, chapter in Iron Sulfur Clusters in Chemistry and Biology, Verlag Walter de Gruyter, Tracey Rouault (editor), 2014, chapter 14, 347-366. 10.1515/9783110308426.347Search in Google Scholar

[25] Hunt J., Genetic and biochemical characterization of YrkF, a novel two-domain sulfurtransferase in Bacillus subtilis, Master’s thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2004. Search in Google Scholar

[26] Cartini F., Remelli W., Dos Santos P.C., Papenbrock J., Pagani S., Forlani F. Mobilization of sulfane sulfur from cysteine desulfurases to the Azotobacter vinelandii sulfurtransferase RhdA. Amino Acids, 2010, 41, 141-150. 10.1007/s00726-010-0529-zSearch in Google Scholar PubMed

[27] Numata T., Ikeuchi Y., Fukai S., Suzuki T., Nureki O., Snapshots of tRNA sulphuration via an adenylated intermediate, Nature, 2006, 4442, 419-424. 10.1038/nature04896Search in Google Scholar PubMed

[28] Shi R., Proteau A., Villarroa M., Moukadiri I., Zhang L., Trempe J.F., Matte A., Armengood M.E., Cygler M., Structural Basis for Fe-S Cluster Assembly and tRNA Thiolation Mediated by IscS Protein-Protein Interactions, 2010, PLoS Biology 8(4): e1000354. 10.1371/journal.pbio.1000354Search in Google Scholar PubMed PubMed Central

[29] Selbach, B., Pradhan P., Dos Santos P.C., Protected Sulfur Transfer Reactions by the Escherichia coli Suf System, Biochemistry, 2013, 52, 4089-4096. 10.1021/bi4001479Search in Google Scholar PubMed

[30] Dai Y., Outten F.W., The E. coli SufS-SufE sulfur transfer system is more resistant to oxidative stress than IscS-IscU, FEBS letters, 2012, 586(22), 4016-4022. 10.1016/j.febslet.2012.10.001Search in Google Scholar PubMed PubMed Central

Received: 2015-8-6
Accepted: 2015-12-5
Published Online: 2016-1-20

© 2015 Hannah L. Martin et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 30.11.2023 from
Scroll to top button