Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access February 10, 2017

Bioinformatic resources for the investigation of proteins and proteomes

Angelo Facchiano EMAIL logo
From the journal Peptidomics


Experimental techniques in omics sciences need strong support of bioinformatics tools for the data management, analysis and interpretation. Scientific community develops continuously new databases and tools. They make it possible the comparison of new experimental data with the existing ones, to gain new knowledge. Bioinformatics assists proteomics scientists for protein identification from experimental data, management of the huge data produced, investigation of molecular mechanisms of protein functions, their roles in biochemical pathways, and functional interpretation of biological processes. This article introduces the main bioinformatics resources for investigation in the protein world, with references to analyses performed by means of free tools available on the net.


[1] Strasser B.J. Collecting, Comparing, and Computing Sequences: The Making of Margaret O. Dayhoff’s Atlas of Protein Sequence and Structure. 1954-1965. J Hist Biol.. 2010. 43, 623-660.Search in Google Scholar

[2] Brazma A., Hingamp P., Quackenbush J., Sherlock G., Spellman P., Stoeckert C., Aach J., Ansorge W., Ball C.A., Causton H.C., et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet., 2001, 29, 365-371.10.1038/ng1201-365Search in Google Scholar PubMed

[3] Taylor C.F., Paton N.W., Lilley K.S., Binz P.A., Julian R.K. Jr, Jones A.R., Zhu W., Apweiler R., Aebersold R., Deutsch E.W., et al. The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol., 2007, 25, 887-893.10.1038/nbt1329Search in Google Scholar PubMed

[4] Chervitz S.A., Deutsch E.W., Field D., Parkinson H., Quackenbush J., Rocca-Serra P., Sansone S.A., Stoeckert C.J. Jr, Taylor C.F., Taylor R., Ball C.A. Data standards for Omics data: the basis of data sharing and reuse. Methods Mol Biol., 2011, 719, 31-69.10.1007/978-1-61779-027-0_2Search in Google Scholar PubMed PubMed Central

[5] Baker N.A., Klemm J.D., Harper S.L., Gaheen S., Heiskanen M., Rocca-Serra P., Sansone S.A. Standardizing data. Nat Nanotechnol., 2013, 8, 73-74.10.1038/nnano.2013.12Search in Google Scholar PubMed PubMed Central

[6] Kim M.S., Pinto S.M., Getnet D., Nirujogi R.S., Manda S.S., Chaerkady R., Madugundu A.K., Kelkar D.S., Isserlin R., Jain S., et al. A draft map of the human proteome. Nature, 2014, 509, 575-581.10.1038/nature13302Search in Google Scholar PubMed PubMed Central

[7] Wilhelm M., Schlegl J., Hahne H., Moghaddas Gholami A., Lieberenz M., Savitski M.M., Ziegler E., Butzmann L., Gessulat S., Marx H., et al. Mass-spectrometry-based draft of the human proteome. Nature, 2014, 509, 582-587.10.1038/nature13319Search in Google Scholar PubMed

[8] The UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res., 2015 (Database issue), 43, D204-D212.10.1093/nar/gku989Search in Google Scholar PubMed PubMed Central

[9] Benson DA, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res., 2015 (Database issue), 43, D30-D35.10.1093/nar/gku1216Search in Google Scholar PubMed PubMed Central

[10] Goodstein D.M., Shu S., Howson R., Neupane R., Hayes R.D., Fazo J., Mitros T., Dirks W., Hellsten U., Putnam N., Rokhsar D.S. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res., 2012 (Database issue), 40, D1178-D1186.10.1093/nar/gkr944Search in Google Scholar PubMed PubMed Central

[11] Pagani I., Liolios K., Jansson J., Chen I.M., Smirnova T., Nosrat B., Markowitz V.M., Kyrpides N.C. The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res., 2012 (Database issue), 40, D571-D579.10.1093/nar/gkr1100Search in Google Scholar PubMed PubMed Central

[12] Facchiano A.M., Facchiano A., Facchiano F. Active Sequences Collection (ASC) database: a new tool to assign functions to protein sequences. Nucleic Acids Res., 2003, 31, 379-382.10.1093/nar/gkg042Search in Google Scholar PubMed PubMed Central

[13] Wang G., Li X. and Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res., 2009 (Database issue), 37, D933-D937.10.1093/nar/gkn823Search in Google Scholar PubMed PubMed Central

[14] Fjell C. D., Hancock R.E., Cherkasov, A. AMPer: a database and an automated discovery tool for antimicrobial peptides. Bioinformatics, 2007, 23, 1148-1155.10.1093/bioinformatics/btm068Search in Google Scholar PubMed

[15] Di Luca M., Maccari, G., Maisetta G., Batoni G. BaAMPs: the database of biofilm-active antimicrobial peptides Biofouling, 2015, 31, 193-199.10.1080/08927014.2015.1021340Search in Google Scholar PubMed

[16] Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, Wheeler DK, Gabbard JL, Hix D, Sette A, Peters B. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 2015 Jan;43(Database issue), D405-412.Search in Google Scholar

[17] Brusic V, Millot M, Petrovsky N, Gendel SM, Gigonzac O, Stelman SJ. Allergen databases. Allergy, 2003, 58, 1093-1100.10.1034/j.1398-9995.2003.00248.xSearch in Google Scholar PubMed

[18] Minkiewicz P., Dziuba J., Iwaniak A., Dziuba M., Darewicz M. BIOPEP database and other programs for processing bioactive peptide sequences. Journal of AOAC International, 2008, 91, 965-980.10.1093/jaoac/91.4.965Search in Google Scholar

[19] Ye J., McGinnis S., Madden T.L. BLAST: improvements for better sequence analysis. Nucleic Acids Res., 2006, 34 (Web Server issue), W6-9.10.1093/nar/gkl164Search in Google Scholar PubMed PubMed Central

[20] Pietrokovski S., Henikoff J.G., Henikoff S. The Blocks database--a system for protein classification. Nucleic Acids Res., 1996, 24, 197-200.10.1093/nar/24.1.197Search in Google Scholar PubMed PubMed Central

[21] Vizcaíno J.A., Côté R.G., Csordas A., Dianes J.A., Fabregat A., Foster J.M., Griss J., Alpi E., Birim M., Contell J., et al. The Proteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res., 2013 (Database issue), 41, D1063-D1069.10.1093/nar/gks1262Search in Google Scholar PubMed PubMed Central

[22] Csordas A., Wang R., Rios D., Reisinger F., Foster J.M., Slotta D.J., Vizcaino J.A., Hermjakob H. From Peptidome to PRIDE: Public proteomics data migration at a large scale. Proteomics, 2013, 13, 1692-1695.10.1002/pmic.201200514Search in Google Scholar PubMed PubMed Central

[23] Hoogland C., Mostaguir K., Appel R.D., Lisacek F. The World-2DPAGE Constellation to promote and publish gel-based proteomics data through the ExPASy server. J. of Proteomics, 2008, 71, 245-248.10.1016/j.jprot.2008.02.005Search in Google Scholar PubMed

[24] Binns D., Dimmer E., Huntley R., Barrell D., O’Donovan C., Apweiler R. QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics, 2009, 25, 3045-3046.10.1093/bioinformatics/btp536Search in Google Scholar PubMed PubMed Central

[25] Tanabe M., Kanehisa M. Using the KEGG database resource. Curr Protoc Bioinformatics, 2012, Chapter 1:Unit1.12.10.1002/0471250953.bi0112s38Search in Google Scholar PubMed

[26] Amberger J.S., Bocchini C.A., Schiettecatte F., Scott A.F., Hamosh A. Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res., 2015, 43(Database issue), D789-D798.10.1093/nar/gku1205Search in Google Scholar PubMed PubMed Central

Received: 2015-10-5
Accepted: 2016-1-22
Published Online: 2017-2-10
Published in Print: 2017-2-1

© 2017

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 27.1.2023 from
Scroll Up Arrow