Abstract
One of the main ways we try to understand the COVID-19 pandemic is through time series cross section counts of cases and deaths. Observational studies based on these kinds of data have concrete and well known methodological issues that suggest significant caution for both consumers and produces of COVID-19 knowledge. We briefly enumerate some of these issues in the areas of measurement, inference, and interpretation.
Funding source: Office of Naval Research
Award Identifier / Grant number: N00014-19-1-2491
Funding source: Charles Koch Foundation
Acknowledgments
Our thanks to the Center for Peace and Security Studies and its members, and to the Office of Naval Research [N00014-19-1-2491] and the Charles Koch Foundation for financial support. Thank you to all who provided feedback on the early draft, including two anonymous reviewers.
-
Author contributions: Conceptualization, R.W.D., T.L.S., and E.G.; Investigation, R.W.D.; Writing–Original Draft, R.W.D.; Writing–Review & Editing, R.W.D. and T.L.S.; and Funding–E.G.
References
Alamo, T., D. G. Reina, M. Mammarella, and A. Abella. 2020. “Covid-19: Open-Data Resources for Monitoring, Modeling, and Forecasting the Epidemic.” Electronics 9 (5): 827. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/electronics9050827.Search in Google Scholar
Brauer, F., and C. Castillo-Chavez. 2012. Mathematical Models in Population Biology and Epidemiology, Vol. 2, New York, NY: Springer.10.1007/978-1-4614-1686-9Search in Google Scholar
Cheng, C., J. Barceló, A. S. Hartnett, R. Kubinec, and L. Messerschmidt. 2020. “COVID-19 Government Response Event Dataset (CoronaNet V.1.0).” Nature Human Behaviour 4 (7): 756–68. Nature Publishing Group. https://doi.org/10.1038/s41562-020-0909-7.Search in Google Scholar
COVID-19 India Org Data Operations Group. 2020. “Dataset for Tracking COVID-19 Spread in India.” COVID-19 India Org Data Operations Group. https://api.covid19india.org/ (Accessed August 20, 2020).Search in Google Scholar
Hale, T., A. Petherick, T. Phillips, and S. Webster. 2020. Variation in Government Responses to COVID-19. Blavatnik School of Government. Working Paper 31.Search in Google Scholar
Kaashoek, J., and M. Santillana. 2020. COVID-19 Positive Cases, Evidence on the Time Evolution of the Epidemic or an Indicator of Local Testing Capabilities? A Case Study in the United States. SSRN Scholarly Paper ID 3574849. Rochester, NY: Social Science Research Network, https://doi.org/10.2139/ssrn.3574849.Search in Google Scholar
Kogan, N. E., L. Clemente, P. Liautaud, J. Kaashoek, N. B. Link, A. T. Nguyen, F. S. Lu, P. Huybers, B. Resch, C. Havas, A. Petutschnig, J. Davis, M. Chinazzi, B. Mustafa, W. P. Hanage, A. Vespignani, and M. Santillana. 2020. An Early Warning Approach to Monitor COVID-19 Activity with Multiple Digital Traces in Near Real-Time. arXiv:2007.00756 [Q-Bio, Stat], July. https://arxiv.org/abs/2007.00756.Search in Google Scholar
Kubinec, R., and L. Carvalho. 2020. A Retrospective Bayesian Model for Measuring Covariate Effects on Observed COVID-19 Test and Case Counts. April. SocArXiv, https://doi.org/10.31235/osf.io/jp4wk.Search in Google Scholar
Lipton, Z., J. Ellington, Smike, J. Ouyang, K. Riley, J. Ellinger, J. Hammerbacher, O. Lacan, J. Crane, and space-buzzer. 2020. The Covid-Tracking Project. Zenodo, https://doi.org/10.5281/zenodo.3981599.Search in Google Scholar
Meyerowitz-Katz, G., and L. Merone. 2020. A Systematic Review and Meta-Analysis of Published Research Data on COVID-19 Infection-Fatality Rates. medRxiv, May. Cold Spring Harbor Laboratory Press, https://doi.org/10.1101/2020.05.03.20089854.Search in Google Scholar
Peeling, R. W., C. J. Wedderburn, P. J. Garcia, D. Boeras, N. Fongwen, J. Nkengasong, A. Sall, A. Tanuri, and D. L. Heymann. 2020. “Serology Testing in the COVID-19 Pandemic Response.” The Lancet Infectious Diseases 20 (9): e245–9. Elsevier. https://doi.org/10.1016/S1473-3099(20)30517-X.Search in Google Scholar
Pouwels, K. B., T. House, J. V. Robotham, P. Birrell, A. B. Gelman, N. Bowers, I. Boreham, H. Thomas, J. Lewis, I. Bell, J. I. Bell, J. Newton, J. Farrar, I. Diamond, P. Benton, and S. Walker. 2020. Community Prevalence of SARS-CoV-2 in England: Results from the ONS Coronavirus Infection Survey Pilot. medRxiv, July. Cold Spring Harbor Laboratory Press, https://doi.org/10.1101/2020.07.06.20147348.Search in Google Scholar
Reich, N. G., J. Niemi, K. House, A. Hannan, E. Cramer, S. Horstman, S. Xie, Y. Gu, N. Wattanachit, J. Bracher, S. Y. Wang, C. Gibson, S. Woody, M. L. Li, R. Walraven, har96, X. Zhang, jinghuichen, G. Espana, X. Xinyue, H. Biegel, L. Castro, Y. Wang, qjhong, E. Lee, A. Baxter, S. Bhatia, E. Ray, and abrennen, and ERDC CV19 Modeling Team. 2020. Reichlab/Covid19-Forecast-Hub: Pre-publication Snapshot. Zenodo, https://doi.org/10.5281/zenodo.3963372.Search in Google Scholar
Souch, J. M., and J. S. Cossman. 2020. “A Commentary on Rural-Urban Disparities in COVID-19 Testing Rates Per 100,000 and Risk Factors.” The Journal of Rural Health, (00): 1–3, https://doi.org/10.1111/jrh.12450.Search in Google Scholar
Sun, A., T. Fehr, A. Tse, Rachel, and W. Andrews. 2020. New York Times Coronavirus (Covid-19) Data in the United States. Zenodo, https://doi.org/10.5281/zenodo.3981451.Search in Google Scholar
USAFacts. 2020. US Coronavirus Cases and Deaths. Zenodo, https://doi.org/10.5281/zenodo.3981486.Search in Google Scholar
Wang, G., Z. Gu, X. Li, Y. Shan, M. Kim, Y. Wang, L. Gao, and L. Wang. 2020. Comparing and Integrating US COVID-19 Daily Data from Multiple Sources: A County-Level Dataset with Local Characteristics. arXiv:2006.01333 [Stat], June. https://arxiv.org/abs/2006.01333.Search in Google Scholar
Weinberger, D. M., J. Chen, T. Cohen, F. W. Crawford, F. Mostashari, D. Olson, V. E. Pitzer, N. G. Reich, M. Russi, L. Simonsen, A. Watkins, and C. Viboud. 2020. “Estimation of Excess Deaths Associated with the COVID-19 Pandemic in the United States, March to May 2020.” JAMA Internal Medicine, https://doi.org/10.1001/jamainternmed.2020.3391.Search in Google Scholar
Wolf, A., A. Ary, and H. Firooz. 2020. Yahoo Knowledge Graph COVID-19 Datasets. Zenodo, https://doi.org/10.5281/zenodo.3981432.Search in Google Scholar
Yang, T., K. Shen, S. He, E. Li, P. Sun, P. Chen, L. Zuo, J. Hu, Y. Mo, W. Zhang, H. Zhang, J. Chen, and Y. Guo. 2020. CovidNet: To Bring Data Transparency in the Era of COVID-19. arXiv:2005.10948 [Cs, Q-Bio], July. https://arxiv.org/abs/2005.10948.Search in Google Scholar
Zhang, C., C. Donthini, and Microsoft Open Source. 2020. Bing-COVID-19-Data. Zenodo, https://doi.org/10.5281/zenodo.3978733.Search in Google Scholar
Zohrab, J., R. Block, C. Chamberlain, L. Davis, M. Nguyeñ^, A. Gifillan, A. Hughes, B. Wolfgang, and andys1376. 2020. COVID Atlas Li. Zenodo, https://doi.org/10.5281/zenodo.3981563.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston