Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 3, 2014

Magnetic properties of co-modified Fe,N-TiO2 nanocomposites

Grzegorz Zolnierkiewicz, Spiros Glenis, Niko Guskos, Aleksander Guskos, Janusz Typek, Pawel Berczynski, Diana Dolat, Sylwia Mozia and Antoni W. Morawski
From the journal Open Physics

Abstract

Iron and nitrogen co-modified titanium dioxide nanocomposites, nFe,N-TiO2 (where n = 1, 5 and 10 wt% of Fe), were investigated by detailed dc susceptibility and magnetization measurements. Different kinds of magnetic interactions were evidenced depending essentially on iron loading of TiO2. The coexistence of superparamagnetic, paramagnetic and ferromagnetic phases was identified at high temperatures. Strong antiferromagnetic interactions were observed below 50 K, where some part of the nanocomposite entered into a long range antiferromagnetic ordering. Antiferromagnetic interactions were attributed to the magnetic agglomerates of iron-based and trivalent iron ions in FeTiO3 phase,whereas ferromagnetic interactions stemmed from the F-center mediated bound magnetic polarons.

References

[1] Z. Matsumoto et al., Science 291, 854 (2001)10.1126/science.1056186Search in Google Scholar PubMed

[2] Y. R. Park, S. Choi, J. H. Lee, and K. J. Kim, Kor. Phys. Soc. 50, 638 (2007)10.3938/jkps.50.893Search in Google Scholar

[3] H. Li, M. Liu, Y. Yeng, and T. Huang, J. Cent. South Univ. Tech. 17, 239 (2010)10.1007/s11771-010-0037-zSearch in Google Scholar

[4] Y. L. Zhao et al., Appl. Phys. Lett. 101, 142105 (2012)10.1063/1.4756799Search in Google Scholar

[5] B. Choudhury and A. Choudhury, Mat. Sci. Eng. B 178, 794 (2013)10.1016/j.mseb.2013.03.016Search in Google Scholar

[6] G. Mallia, N. M. Harrison, Phys. Rev. B 75, 165201 (2007).10.1103/PhysRevB.75.165201Search in Google Scholar

[7] B. Santara, P. K. Giri, S. Dhara, K. Imakata, M. Fuji, J. Phys. D: Appl. Phys. 47, 235304 (2014)10.1088/0022-3727/47/23/235304Search in Google Scholar

[8] D. Kim, J. Hong, Y. R. Park, K. J. Kim, J. Phys.: Condens. Matter 21, 195405 (2009)10.1088/0953-8984/21/19/195405Search in Google Scholar PubMed

[9] A. M. Mudarra Navarro, V. Bilovol, A. F. Cabrera, C. E. Rodriguez Torres, Physica B 407, 3225 (2012)10.1016/j.physb.2011.12.072Search in Google Scholar

[10] M. Parras et al., J. Phys. Chem. Lett. 4. 2171 (2013)10.1021/jz401115qSearch in Google Scholar

[11] I. Nakai et al., J. Korean Phys. Soc. 63, 532 (2013)10.3938/jkps.63.532Search in Google Scholar

[12] N. N. Bao, H. M. Fan, J. Ding, J. B. Yi, J. Appl. Phys. 109, 07C302 (2011)10.1063/1.3535427Search in Google Scholar

[13] D. Dolat, S. Mozia, B. Ohtani, and A.W. Morawski, Chem. Eng. J. 225, 358 (2013)10.1016/j.cej.2013.03.047Search in Google Scholar

[14] J. M. Coronado et al., Langmuir 17, 5368 (2001)10.1021/la010153fSearch in Google Scholar

[15] G. Mele et al., J. Phys. Chem. B 109, 12347 (2005)10.1021/jp044253gSearch in Google Scholar PubMed

[16] S. Yang et al., Appl. Phys. Lett. 94, 162114 (2009)10.1063/1.3124656Search in Google Scholar

[17] B. Tiana et al., Chem. Eng. J., 151 , 220 (2009)Search in Google Scholar

[18] F. D. Brandao, M. V. B. Pinheiro, G. M. Ribeiro, G. Medeiros- Ribeiro, and K. Krambrock, Phys. Rev B 80, 235204 (2009)10.1103/PhysRevB.80.235204Search in Google Scholar

[19] S. Yang, A. T. Brant, and L. E. Halliburton, Phys. Rev. B 82, 035209 (2010)10.1103/PhysRevB.82.035209Search in Google Scholar

[20] I. R.Macdonalda, R. F. Howea, X. Zhang,W. Zhou, J. Photochemistry and Photobiology. A: Chem., 216, 238 (2010)10.1016/j.jphotochem.2010.07.023Search in Google Scholar

[21] I. A. Shkrob, T. W. Marin, S. D. Chemerisov, and M. D. Sewilla, J. Phys. Chem. C 115, 4642 (2011)10.1021/jp110612sSearch in Google Scholar PubMed PubMed Central

[22] N. Guskos et al., Mater. Sci. Eng. B 177, 223 (2012)10.1016/j.mseb.2011.10.017Search in Google Scholar

[23] N. Guskos et al., Mater. Chem. Phys. 136, 889 (2012)10.1016/j.matchemphys.2012.07.062Search in Google Scholar

[24] N. Guskos et al., Central Eur. J. Chem. 11, 1994 (2003)Search in Google Scholar

[25] N. Guskos et al., J. Alloys Compd. 606, 32 (2014)10.1016/j.jallcom.2014.03.130Search in Google Scholar

[26] N. Guskos et al., J. Appl. Phys. 99, 084307 (2006)10.1063/1.2189216Search in Google Scholar

[27] N. Guskos et al., J. Non Cryst. Solids. 354, 4401 (2008)10.1016/j.jnoncrysol.2008.06.059Search in Google Scholar

[28] N. Guskos et al., J. Nanosci. Nanotech. 8, 2127 (2008)10.1166/jnn.2008.063Search in Google Scholar

[29] R. W. Chantrell, N. S. Walmsley, J. Gore, and M. Maylin, Phys. Rev. B 63, 024410 (2000)10.1103/PhysRevB.63.024410Search in Google Scholar

[30] P. P. Vaishnava et al., Phys. Rev. B 76, 024413 (2007)10.1103/PhysRevB.76.024413Search in Google Scholar

[31] M. J. Calderon, S. Das Sarma, Ann. Phys-New York 322, 2618 (2007)10.1016/j.aop.2007.01.010Search in Google Scholar

[32] N. Guskos et al., J. Appl. Phys. 97, 0204304 (2005)Search in Google Scholar

[33] F. E. Senftle et al., Earth Planet. Sci. Lett. 26, 377 (197510.1016/0012-821X(75)90014-XSearch in Google Scholar

Received: 2014-4-9
Accepted: 2014-7-28
Published Online: 2014-11-3
Published in Print: 2015-1-1

© 2015 N. Guskos et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow