Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 17, 2015

Fractional thermal diffusion and the heat equation

Francisco Gómez, Luis Morales, Mario González, Victor Alvarado and Guadalupe López
From the journal Open Physics


Fractional calculus is the branch of mathematical analysis that deals with operators interpreted as derivatives and integrals of non-integer order. This mathematical representation is used in the description of non-local behaviors and anomalous complex processes. Fourier’s lawfor the conduction of heat exhibit anomalous behaviors when the order of the derivative is considered as 0 < β,ϒ ≤ 1 for the space-time domain respectively. In this paper we proposed an alternative representation of the fractional Fourier’s law equation, three cases are presented; with fractional spatial derivative, fractional temporal derivative and fractional space-time derivative (both derivatives in simultaneous form). In this analysis we introduce fractional dimensional parameters σx and σt with dimensions of meters and seconds respectively. The fractional derivative of Caputo type is considered and the analytical solutions are given in terms of the Mittag-Leffler function. The generalization of the equations in spacetime exhibit different cases of anomalous behavior and Non-Fourier heat conduction processes. An illustrative example is presented.


[1] D. Ben-Avraham, S. Havlin, Diffusion and reactions in fractals and disordered systems (Cambridge University Press, United Kingdom, 2000) 10.1017/CBO9780511605826Search in Google Scholar

[2] R. Metzler, A.V. Chechkin, J. Klafter, Encyclopedia of complexity and systems science (Springer, New York, 2009) Search in Google Scholar

[3] H. Scher, E.W. Montroll, Phys. Rev. B. 12, 2455 (1975) 10.1103/PhysRevB.12.2455Search in Google Scholar

[4] K.B. Oldham, J. Spanier, The fractional calculus (Academic Press, New York, 1974) Search in Google Scholar

[5] M. Duarte Ortiguera, Fractional calculus for scientists and engineers (Springer, New York, 2011) Search in Google Scholar

[6] I. Podlubny, Fractional differential equations (Academic Press, New York, 1999) Search in Google Scholar

[7] H. Nasrolahpour, Commun. Nonlinear Sci. Numer. Simul. 18, 9 (2013) 10.1016/j.cnsns.2013.01.005Search in Google Scholar

[8] J.F. Gómez Aguilar, D. Baleanu, Z. Naturforsch. 69a, 539 (2014) 10.5560/zna.2014-0049Search in Google Scholar

[9] R.P. Agarwal, B.D. Angrade, G. Siracusa. Compt.Math. Appl. 62, 1143 (2011) 10.1016/j.camwa.2011.02.033Search in Google Scholar

[10] F. Gómez, J. Bernal, J. Rosales, T. Córdova, J. Electr. Bioimp. 3, 1 (2012) Search in Google Scholar

[11] R. Gorenflo, F.Mainardi, Eur. Phys. J. Special Topics 193, 1 (2011) 10.1140/epjst/e2011-01386-2Search in Google Scholar

[12] F.Mainardi, Fractional calculus and waves in linear viscoelasticity (Imperial College Press, London, 2010) 10.1142/p614Search in Google Scholar

[13] J.F. Gómez-Aguilar, R. Razo-Hernández, D. Granados- Lieberman. Rev. Mex. Fís. 60, 1 (2014) Search in Google Scholar

[14] D. Baleanu, A.K. Golmankhaneh, A.K. Golmankhaneh, M.C. Baleanu, Int. J. Theor. Phys. 48, 11 (2009) 10.1007/s10773-009-0109-8Search in Google Scholar

[15] D. Baleanu, A.K. Golmankhaneh, R. Nigmatullin, A.K. Golmankhaneh, Centr. Eur. J. Phys. 8, 1 (2010) 10.2478/s11534-009-0085-xSearch in Google Scholar

[16] J.F. Gómez Aguilar, J.R. Razo Hernández, Revista Investigación y Ciencia de la Universidad Autónoma de Aguascalientes 22, 61 (2014) Search in Google Scholar

[17] Mohamed A.E. Herzallah, I. Muslih Sami, D. Baleanu, M. Rabei Eqab, Nonlinear Dynam. 66, 4 (2011) 10.1007/s11071-010-9933-xSearch in Google Scholar

[18] F. Mainardi, Y. Luchko, G. Pagnini, Fract. Calc. Appl. Anal. 4, 2 (2001) Search in Google Scholar

[19] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) 10.1016/S0370-1573(00)00070-3Search in Google Scholar

[20] J. Bisquert, A. Compte, J. Electroanal. Chem. 499, 1 (2001) 10.1016/S0022-0728(00)00497-6Search in Google Scholar

[21] J.F. Gómez Aguilar, M.M. Hernández, Abstr. Appl. Anal. 2014, 283019 (2014) Search in Google Scholar

[22] Mohamed A.E. Herzallah, Ahmed M.A. El-Sayed, D. Baleanu, Rom. J. Phys. 55, 3 (2010) Search in Google Scholar

[23] M.A. Ezzat, AA. El-Bary, M.A. Fayik, Mech. Adv.Mater. Struc. 20, 1 (2013) 10.1080/15376494.2011.643280Search in Google Scholar

[24] Y.Z. Povstenko, J. Ther. Stresses 28, 1 (2004) 10.1080/014957390523741Search in Google Scholar

[25] O. Narayan, S. Ramaswamy, Phys. Rev. Lett. 89, 200601 (2002) 10.1103/PhysRevLett.89.200601Search in Google Scholar PubMed

[26] X.-J. Yang, D. Baleanu, Therm. Sci. 17, 2 (2013) 10.2298/TSCI121124216YSearch in Google Scholar

[27] Y.Z. Povstenko, J. Mol. Liq. 137, 1 (2008) 10.1016/j.molliq.2007.03.006Search in Google Scholar

[28] J. Xiaoyun, X. Mingyu, Physica A. 389, 17 (2010) Search in Google Scholar

[29] J.F. Gómez-Aguilar, J.J. Rosales-García, J.J. Bernal-Alvarado, T. Córdova-Fraga, R. Guzmán-Cabrera, Rev. Mex. Fís. 58, 4 (2012) Search in Google Scholar

[30] J.F. Gómez Aguilar, D. Baleanu, Proc. Rom. Acad. A 1, 15 (2014) Search in Google Scholar

[31] H.J. Haubold, A.M. Mathai, R.K. Saxena, J. Appl. Math. 2011, 298628 (2011) 10.1155/2011/298628Search in Google Scholar

Received: 2014-9-9
Accepted: 2014-10-2
Published Online: 2015-2-17

©2015 F. Gómez et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow