Abstract
Development of resistance limits efficiency of present anticancer therapies and preventing it remains a big challenge in cancer research. It is accepted, at the intuitive level, that resistance emerges as a consequence of the heterogeneity of cancer cells at the molecular, genetic and cellular levels. Produced by many sources, tumor heterogeneity is extremely complex time dependent statistical characteristics which may be quantified by measures defined in many different ways, most of them coming from statistical mechanics. In this paper, we apply the Markovian framework to relate population heterogeneity to the statistics of the environment. As, from an evolutionary viewpoint, therapy corresponds to a purposeful modi- fication of the cells’ fitness landscape, we assume that understanding general relationship between the spatiotemporal statistics of a tumor microenvironment and intratumor heterogeneity will allow to conceive the therapy as an inverse problem and to solve it by optimization techniques. To account for the inherent stochasticity of biological processes at cellular scale, the generalized distancebased concept was applied to express distances between probabilistically described cell states and environmental conditions, respectively.
References
[1] A. Marusyk, K. Polyak, Science 339, 528 (2013) 10.1126/science.1234415Search in Google Scholar PubMed
[2] M.M. Gottesman, Annu. Rev. Med. 53, 615 (2002) 10.1146/annurev.med.53.082901.103929Search in Google Scholar PubMed
[3] S.J. Altschuler, L.F. Wu, Cell 141, 559 (2010) 10.1016/j.cell.2010.04.033Search in Google Scholar PubMed PubMed Central
[4] N.D.Marjanovic, R.A. Weinberg, C.L. Chaffer, Clin. Chem. 59, 253 (2013) 10.1373/clinchem.2012.184655Search in Google Scholar PubMed PubMed Central
[5] S. Huang, Cancer Metastasis Rev. 32, 423 (2013) 10.1007/s10555-013-9435-7Search in Google Scholar PubMed
[6] K. Kemper, P.L. de Goeje, D.S. Peeper, R. van Amerongen, Cancer Res. 74, 5937 (2014) 10.1158/0008-5472.CAN-14-1174Search in Google Scholar PubMed
[7] W.L. Tam, R.A. Weinberg, Nat. Med. 19, 1438 (2013) 10.1038/nm.3336Search in Google Scholar PubMed PubMed Central
[8] W.M. ElShamy, R.J. Douhé, Cancer Lett. 341, 2 (2013) 10.1016/j.canlet.2013.06.020Search in Google Scholar PubMed
[9] N.A. Saunders et al., EMBO Mol. Med. 4, 675 (2012) 10.1002/emmm.201101131Search in Google Scholar PubMed PubMed Central
[10] S.T. Buckland, A.E. Magurran, R.E. Green, R.M. Fewster, Phil. Trans. R. Soc. B 360, 243 (2005) 10.1098/rstb.2004.1589Search in Google Scholar PubMed PubMed Central
[11] C.J. Keylock, OIKOS 109, 203 (2005) 10.1111/j.0030-1299.2005.13735.xSearch in Google Scholar
[12] R.S. Mendes, L.R. Evangelista, S.M. Thomaz, A.A. Agostinho, L.C. Gomes, Ecography 31, 450 (2008) 10.1111/j.0906-7590.2008.05469.xSearch in Google Scholar
[13] L. Preziosi, Cancer Modeling and Simulation (Chapman & Hall/CRC London, 2003) Search in Google Scholar
[14] C.Maenhaut, J. E. Dumont, P.P. Roger,W.C.G. Staveren, Carcinogenesis 31, 149 (2010) 10.1093/carcin/bgp259Search in Google Scholar PubMed
[15] H.H. Chang, M. Hemberg, M. Barahona, D.E. Ingber, S. Huang, Nature 453, 544 (2008) 10.1038/nature06965Search in Google Scholar PubMed PubMed Central
[16] E. Quintana et al., Cancer Cell 18, 510 (2010) 10.1016/j.ccr.2010.10.012Search in Google Scholar PubMed PubMed Central
[17] S.V. Sharma et al., Cell 141, 69 (2010) 10.1016/j.cell.2010.02.027Search in Google Scholar PubMed PubMed Central
[18] K.S. Hoek, C.R. Goding, Pigment Cell Melanoma Res. 23, 746 (2010) 10.1111/j.1755-148X.2010.00757.xSearch in Google Scholar PubMed
[19] C.L. Chaffer et al., Proc. Natl. Acad. Sci. USA 108, 7950 (2011) 10.1073/pnas.1102454108Search in Google Scholar PubMed PubMed Central
[20] P. B. Gupta, et al., Cell 146, 633 (2011) 10.1016/j.cell.2011.07.026Search in Google Scholar PubMed
[21] K. Binder, D.W. Heermann,Monte Carlo Simulation in Statistical Physics: An Introduction 4th Ed. (Springer-Verlag, Berlin, 2002) 10.1007/978-3-662-04685-2Search in Google Scholar
[22] P.J. Choi, L.Cai, K. Frieda, S. Xie, Science 322, 442 (2008) 10.1126/science.1161427Search in Google Scholar PubMed PubMed Central
[23] A. Raj, A. van Oudenaarden, Cell 135, 216 (2008) 10.1016/j.cell.2008.09.050Search in Google Scholar PubMed PubMed Central
[24] A. Eldar, M.B. Elowitz, Nature 467, 167 (2010) 10.1038/nature09326Search in Google Scholar PubMed PubMed Central
[25] U. Liberman, J.V. Cleve, M.W. Feldman, Genetics 187, 837 (2011) 10.1534/genetics.110.123620Search in Google Scholar PubMed PubMed Central
[26] E. Pujadas, A.P. Feinberg, Cell 148, 1123 (2012) 10.1016/j.cell.2012.02.045Search in Google Scholar PubMed PubMed Central
[27] E. Kussell, S. Leibler, Science 309, 2075 (2005) 10.1126/science.1114383Search in Google Scholar PubMed
[28] E. Kussell, R. Kishony, N.Q. Balaban, S. Leibler, Genetics 169, 1807 (2005) 10.1534/genetics.104.035352Search in Google Scholar PubMed PubMed Central
[29] M. Acar, J.T. Mettetal, A. van Oudenaarden, Nat. Genet. 40, 471 (2008) 10.1038/ng.110Search in Google Scholar PubMed
[30] W.E. Frankenhuis, K. Panchanathan, Proc. R. Soc. Lond. B 278, 3558 (2011) 10.1098/rspb.2011.0055Search in Google Scholar PubMed PubMed Central
[31] E. Libby, P.B. Rainey, Proc. R. Soc. Lond. B 278, 3574 (2011) 10.1098/rspb.2011.0146Search in Google Scholar PubMed PubMed Central
[32] D. Fudenberg, L.A. Imhof, Bull. Math. Biol. 74, 399 (2012) 10.1007/s11538-011-9687-8Search in Google Scholar PubMed
[33] S. Fedotov, A. Iomin, Phys. Rev. Lett. 98, 118101 (2007) 10.1103/PhysRevLett.98.118101Search in Google Scholar PubMed
[34] S. Fedotov, A. Iomin, Phys. Rev. E 77, 031911 (2008) 10.1103/PhysRevE.77.031911Search in Google Scholar PubMed
[35] P.C. Nowell, Science 194, 23 (1976) 10.1126/science.959840Search in Google Scholar PubMed
[36] L.M.F. Merlo, J.W. Pepper, B.J. Reid, C.C.Maley, Nat. Rev. Cancer 6, 924 (2006) 10.1038/nrc2013Search in Google Scholar PubMed
[37] M. Greaves, Nat. Rev. Cancer 7, 213 (2007) 10.1038/nrc2071Search in Google Scholar PubMed
[38] L. López-Maury, S. Marguerat, J. Bähler, Nat. Rev. Genet. 9, 583 (2008) 10.1038/nrg2398Search in Google Scholar PubMed
[39] J. X. Zhou, M. D. S. Aliyu, E. Aurell, S. Huang, J. R. Soc. Interface 9, 3539 (2012) 10.1098/rsif.2012.0434Search in Google Scholar PubMed PubMed Central
[40] M.B. Elowitz, A.J. Levine, E.D. Siggia, P.S. Swain, Science 297, 1183 (2002) 10.1126/science.1070919Search in Google Scholar PubMed
[41] H. Crauel, A. Debussche, F. Flandoli, J. Dynam. Differential Equations 9, 307 (1997) 10.1007/BF02219225Search in Google Scholar
[42] J. Braun, M. Mattia, NeuroImage 52, 740 (2010) 10.1016/j.neuroimage.2009.12.126Search in Google Scholar PubMed
[43] O. Stiller, A. Becker, L. Kramer, Phys. Rev. Lett. 68, 3670 (1992) 10.1103/PhysRevLett.68.3670Search in Google Scholar PubMed
[44] M.C. Donaldson-Matasci, M. Lachmann, C.T. Bergstrom, Evol. Ecol. Res. 10, 493 (2008) Search in Google Scholar
[45] E. Hellinger, J. Reine Angew. Math. 1909, 210 (1909) 10.1515/crll.1909.136.210Search in Google Scholar
[46] C. Hesse, D. Holtackers, T. Heskes, In Proceedings of the 1st Annual Symposium IEEE EMBS Benelux Chapter, December 7-8, 2006, Brussels, (Belgium, 2006) Search in Google Scholar
[47] D. Hull, The Metaphysics of Evolution (Stony Brook, State University of New York Press, 1989) Search in Google Scholar
[48] A. Solopova et al., Proc. Natl. Acad. Sci. USA 111, 7427 (2014) 10.1073/pnas.1320063111Search in Google Scholar PubMed PubMed Central
[49] H. Kuwahara, O.S. Soyer, Mol. Syst. Biol. 8, 564 (2012) 10.1038/msb.2011.98Search in Google Scholar PubMed PubMed Central
[50] C.A. Floudas, P.M.P. (Eds.), Encyclopedia of Optimization (Springer Science+Business Media, LLC New York, 2009) Search in Google Scholar
[51] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2004) 10.1137/1.9780898717921Search in Google Scholar
[52] I. de Jong, P. Haccou, O.P. Kuipers, BioEssays 33, 215 (2011) 10.1002/bies.201000127Search in Google Scholar PubMed
[53] J. Müller, B.A. Hense, T.M. Fuchs, M. Utz, C. Pötzsche, J. Theor. Biol. 336, 144 (2013) 10.1016/j.jtbi.2013.07.017Search in Google Scholar PubMed
[54] G. Chen et al., Cell 160, 771 (2015) 10.1016/j.cell.2015.01.026Search in Google Scholar PubMed PubMed Central
[55] S. Lukaszyk, Comput. Mech. 33, 299 (2003) 10.1007/s00466-003-0532-2Search in Google Scholar
©2015 B. Brutovský and D. Horvath
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.