Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 27, 2015

A local description of dark energy in terms of classical two-component massive spin-one uncharged fields on spacetimes with torsionful affinities

Jorge G. Cardoso
From the journal Open Physics

Abstract

It is assumed that the two-component spinor formalisms for curved spacetimes that are endowed with torsionful affine connexions can supply a local description of dark energy in terms of classical massive spin-one uncharged fields. The relevant wave functions are related to torsional affine potentials which bear invariance under the action of the generalized Weyl gauge group. Such potentials are thus taken to carry an observable character and emerge from contracted spin affinities whose patterns are chosen in a suitable way. New covariant calculational techniques are then developed towards deriving explicitly the wave equations that supposedly control the propagation in spacetime of the dark energy background. What immediately comes out of this derivation is a presumably natural display of interactions between the fields and both spin torsion and curvatures. The physical properties that may arise directly fromthe solutions to thewave equations are not brought out.

References

[1] A.G. Riess et al., Astro. Jour. 116, 1009 (1998) Search in Google Scholar

[2] S. Perlmuter et al., Astro. Jour. 517, 565 (1999) Search in Google Scholar

[3] P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003) 10.1103/RevModPhys.75.559Search in Google Scholar

[4] E.J. Copeland et al., Int. J. Mod. Phys. D15, 1753 (2006) 10.1142/S021827180600942XSearch in Google Scholar

[5] A.V. Minkevich, Phys. Lett. B, Vol. 678, Issue 5, 423 (2009) 10.1016/j.physletb.2009.06.050Search in Google Scholar

[6] T. Buchert, Gen. Rel. Grav., 40, 467 (2008) 10.1007/s10714-007-0554-8Search in Google Scholar

[7] C. Beck, M.C. Mackey, Int. J. Mod. Phys. D 17, 71 (2008) 10.1142/S0218271808011870Search in Google Scholar

[8] A.D. Chernin et al., Astrophys. 50, 405 (2007) 10.1007/s10511-007-0038-2Search in Google Scholar

[9] A.R. Prasanna, S. Mohanty, Gen. Rel. Grav., 41, 1905 (2009) 10.1007/s10714-009-0790-1Search in Google Scholar

[10] C.L. Bennett et al., Astrophys. J. Supp. Series 148, 1 (2003) Search in Google Scholar

[11] D.N. Spergel et al., Astrophys. J. Supp. Series 148, 148 (2003) 10.1086/377226Search in Google Scholar

[12] T. Padmanabhan, Phys. Rep. 380, 235 (2003) 10.1016/S0370-1573(03)00120-0Search in Google Scholar

[13] C.G. Böehmer, T. Harko, Eur. Phys. J. C50, 423 (2007) 10.1140/epjc/s10052-007-0210-1Search in Google Scholar

[14] A. Trautman, Encyclopedia ofMathematical Physics, Vol. 2, 189, In: J.P. Françoise, G.L. Naber, S.T. Tsou (Eds.) (Elsevier, Oxford, 2006) Search in Google Scholar

[15] F.W. Hehl et al., Rev. Mod. Phys., 48, 393 (1976) 10.1103/RevModPhys.48.393Search in Google Scholar

[16] R. Penrose, W. Rindler, Spinors and Space-Time Vol. 1, (Cambridge University Press, Cambridge, 1984) 10.1017/CBO9780511564048Search in Google Scholar

[17] T.W. Kibble, Jour. Math. Phys. 2, 212 (1961) 10.1063/1.1703702Search in Google Scholar

[18] D.W. Sciama, On the Analogy Between Charge and Spin in General Relativity, In: Recent Developments in General Relativity (Pergamon and PWN, Oxford, 1962) Search in Google Scholar

[19] N.J. Poplawski, Phys. Lett. B 694, 181 (2010) 10.1016/j.physletb.2010.09.056Search in Google Scholar

[20] C.G. Böehmer, Acta Phys. Polon. B 36, 2841 (2005) Search in Google Scholar

[21] I.L. Shapiro, Phys. Rep. 357, 113 (2002) 10.1016/S0370-1573(01)00030-8Search in Google Scholar

[22] V. De Sabbata, Astrophysics and Space Science Vol. 158, 347 (Kluwer Academic Publishers, Belgium, 1989) 10.1007/BF00639733Search in Google Scholar

[23] S. Capozziello et al., Eur. Phys. Jour. C, 72, 1908 (2012) 10.1140/epjc/s10052-012-2068-0Search in Google Scholar

[24] T.P. Sotiriou, S. Liberat, Ann. Phys. 322, 935 (2007) 10.1016/j.aop.2006.06.002Search in Google Scholar

[25] T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010) 10.1103/RevModPhys.82.451Search in Google Scholar

[26] L. Infeld, B.L. Van der Waerden, Sitzber. Akad. Wiss., Physikmath. Kl. 9, 380 (1933) Search in Google Scholar

[27] H. Weyl, Z. Physik 56, 330 (1929) 10.1007/BF01339504Search in Google Scholar

[28] J.G. Cardoso, Czech. J. Phys. B 4, 401 (2005) 10.1007/s10582-005-0051-9Search in Google Scholar

[29] J.G. Cardoso, Adv. Appl. Clifford Algebras 22, 985 (2012) 10.1007/s00006-012-0328-6Search in Google Scholar

[30] R. Penrose, Ann. Phys. 10, 171 (1960) 10.1016/0003-4916(60)90021-XSearch in Google Scholar

[31] L. Witten, Phys. Rev. 1, 357 (1959) 10.1103/PhysRev.113.357Search in Google Scholar

[32] J.G. Cardoso, Acta Phys. Polon. 38, 2525 (2007) Search in Google Scholar

[33] J.G. Cardoso, Wave Equations for Invariant Infeld-van der Waerden Wave Functions for Photons and Their Physical Significance, In: Photonic Crystals, Optical Properties, Fabrication, W.L. Dahl (Ed.) (Nova Science Publishers Inc., New York, 2010) Search in Google Scholar

[34] H. Jehle, Phys. Rev. 75, 1609 (1949) 10.1103/PhysRev.75.1609Search in Google Scholar

[35] W.L. Bade, H. Jehle, Rev. Mod. Phys. 25, 714 (1953) 10.1103/RevModPhys.25.714Search in Google Scholar

[36] P.G. Bergmann, Phys. Rev. 107, 624 (1957) 10.1103/PhysRev.107.624Search in Google Scholar

[37] E.T. Newman, R. Penrose, Jour. Math. Phys. 3, 566 (1962) 10.1063/1.1724257Search in Google Scholar

[38] R. Penrose, W. Rindler, Spinors and Space-Time Vol. 2 (Cambridge University Press, Cambridge, 1986) 10.1017/CBO9780511524486Search in Google Scholar

[39] J.G. Cardoso, EPJ B 130, 10 (2015) 10.1140/epjp/i2015-15010-0Search in Google Scholar

[40] J. Plebanski, Acta Phys. Polon. 27, 361 (1965) 10.1111/j.2164-0947.1965.tb02204.xSearch in Google Scholar

[41] R. Penrose, Found. Phys. 13, 325 (1983) 10.1007/BF01906181Search in Google Scholar

[42] A. Trautman, Symposia Mathematica 12, 139 (1973) Search in Google Scholar

[43] A. Trautman, Nature (Phys. Sci.) 242, 7 (1973) 10.1038/physci242007a0Search in Google Scholar

[44] A. Trautman, Annals N. Y. Acad. Sci. 262, 241 (1975) 10.1111/j.1749-6632.1975.tb31438.xSearch in Google Scholar

[45] R. Geroch, Jour. Math. Phys. 9, 1739 (1968) 10.1063/1.1664507Search in Google Scholar

[46] R. Geroch, Jour. Math. Phys. 11, 343 (1970) 10.1063/1.1665067Search in Google Scholar

[47] M. Burgess, Classical Covariant Fields, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2005) Search in Google Scholar

Received: 2015-5-2
Accepted: 2015-11-3
Published Online: 2015-11-27

©2015 J.G. Cardoso

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow