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Abstract: In this paper, the numerical solution to the
Helmholtz equation with impedance boundary condition,
based on the Finite volumemethod, is discussed. We used
the Robin boundary condition using exterior points. Prop-
erties of the weak solution to the Helmholtz equation and
numerical solution are presented. Further the numerical
experiments, comparing the numerical solution with the
exact one, and the computation of the experimental order
of convergence are presented.
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1 Introduction
Numerical methods in acoustics solve the wave equation

∂2P
∂t2 = c2∆P, (1)

where P is the pressure and c is the speed of sound. This
equation describes the behavior of sound, light, or water
waves. In the case of time harmonic acoustic propagation
and scattering [1], the pressure function is given by

P (x, t) = Re
(︁
A(x)e−iωt

)︁
. (2)

Here ω = 2πf is the angular frequency measured in rad/s,
f the frequency measured in Hz and Re denotes the real
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part. Function A is in general complex valued and is the
complex acoustic pressure.

To solve (1), themethodof separating the variables can
be applied. Thus the time-independent formof the original
equation is obtained, which is called the Helmholtz equa-
tion

∆A + k2A = 0. (3)

Here |A(x)| is the amplitude of the time harmonic pressure
fluctuation at x and k is the acousticwavenumber (number
of radians per unit distance).Wavenumber is also given by
the formula

k = ωc . (4)

The Helmholtz equation is related to the problems of
steady-state oscillations. The unknown function A(x) is
defined on a two or three dimensional domain D, where its
boundary is denoted by ∂D. In our paper we focus on the
most commonly relevant boundary condition [1], called
impedance boundary condition of the type

∂A
∂n + ikβA = g. (5)

In this boundary condition n denotes the outward normal
to the boundary ∂D, and ∂

∂n denotes the normal derivative.
The function g on the right side of the equation is identi-
cally zero in acoustic scattering problems [1], and is non-
zero for the radiation problems. It is be generally consid-
ered as the sound source. β is the relative surface admit-
tance. In general it is a function of position on the bound-
ary and frequency. The simplest case is when the bound-
ary is acoustically rigid or sound hard. In this case there
is no flow across ∂D and β = 0, so we obtain Neumann
boundary condition. If the value is set to β = 1, it means
the boundary has maximum sound absorption, so the free
space is considered. The results of simulationswith chang-
ing values of β and g can be seen in [2].

Our main goal is to present a numerical scheme for
solving the problem (3), (5) in 2D.



Numerical solution to the Complex 2D Helmholtz Equation | 437

2 Finite Volume Method
There are several numerical techniques for solving the
Helmholtz equation. Among them we can mention the Fi-
nite element method e.g. in [3], or the Boundary element
method e.g. in [4] and [5]. In this article we study numer-
ical solution based on the Finite volume method which is
an extension of the previous work [4].

We present the numerical scheme based on the Finite
volume method [6]. The discretization of the domain D is
the union of so called finite volumes (in 2D usually rect-
angles or triangles). This discretization is denoted as Th,
where the index h is connected with the size of finite vol-
umes. In our case the domain will be a two dimensional
rectangle and our finite volumes will be squares of size
h. In each finite volume p ∈ Th we have a representa-
tive point Xp in which the approximated function can be
evaluated. That is why our numerical solution is a piece-
wise constant function, which is constant on each finite
volume, and is calculated at the representative point. This
point is usually chosen in the barycentre of the finite vol-
ume. Moreover we denote by E the set of all edges of each
finite volume p ∈ Th. If we have our discretization as de-
scribed above, our mesh fulfils an important property

Xp − Xq = dpqnpq (6)

for both neighbouring representative points Xp and Xq.
Herenpq is the outwardnormal of the finite volume p to the
common side with finite volume q; this side is denoted by
σpq and dpq is the distance between representative points
Xp and Xq. An important feature of the method is the local
conservativity of numerical fluxes, which means that the
flux is conserved from one discretization finite volume to
its neighbour.

After the discretization of the domain we have n finite
volumes along one side of the rectangle domain and m fi-
nite volumes along the other, a mesh of m × n finite vol-
umes is obtained. The particular finite volume is labelled
as p and its boundary as ∂p. In the finite volumewedenote
the constant value of the approximated solution as up, and
the solution in the neighbouring volume as uq. The size of
the finite volume p is denoted by m(p) and the edge σpq
has the size denoted by m(σpq). We denote by N(p) the set
of all neighbours of the finite volume p, which means the
finite volumes that have common side with volume p.

The finite volume numerical scheme can be obtained
by integrating the differential equation (3) on each finite
volume. Using Green’s theorem we obtain∫︁

p

k2Adx +
∫︁
∂p

∇A · nds = 0. (7)

We apply the approximation function as discussed above
which can be denoted by

uh(x) = up , x ∈ p. (8)

We use this property in (7) together with the approxima-
tion of the normal derivative by a standard finite differ-
ence. This way we obtain

k2upm(p) +
∑︁
q∈N(p)

uq − up
dpq

m(σpq) = 0. (9)

The solution to the Helmholtz equation is based on
complex values as

A = Ar + iAi . (10)

For the approximate solution it is the same

uh = urh + iuih , (11)

and analogously
up = urp + iuip , (12)

where i is imaginary unit. Thus the proposed equation is
valid for both real part and imaginary part. We will denote
it in a similar way but with the upper indices “r” or “i”. We
have

k2urpm(p) +
∑︁
q∈N(p)

urq − urp
dpq

m(σpq) = 0, (13)

k2uipm(p) +
∑︁
q∈N(p)

uiq − uip
dpq

m(σpq) = 0.

These equations are valid for the interior finite volumes.
We now denote by E = Eint ∪ Eext, where Eint is the set

of all interior edges and Eext is the set of all edges of all fi-
nite volumes that belong to ∂D. Further Th = Th,int∪Th,ext,
where Th,int is the set of all finite volumes which have all
edges in Eint and Th,ext is the set of all finite volumes that
have at least one edge in Eext. Finally by N(p)int we denote
the set of those neighbours with common side σpq ∈ Eint,
and N(p)ext is the set of neighbours with common side
σpq ∈ Eext.

From prescribed boundary condition (5), we obtained
the conditions for the real and imaginary parts of the solu-
tion

∂Ar
∂n − kβAi = gr , (14)

∂Ai
∂n + kβAr = gi

For thefinite volume p ∈ Th,extweuse theboundary condi-
tions to approximate the numerical fluxes along the edges
from Th,ext. For this purposewe use exterior finite volumes
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denoted by qext, and the value of the numerical solution
at these finite volumes is denoted by urqext and uiqext, re-
spectively. Thus for p ∈ Th,ext we have

k2urpm(p) +
∑︁

q∈N(p)int

urq − urp
dpq

m(σpq)+ (15)

∑︁
qext∈N(p)ext

urqext − urp
dpqext

m(σpqext) = 0,

k2uipm(p) +
∑︁

q∈N(p)int

uiq − uip
dpq

m(σpq)+

∑︁
qext∈N(p)ext

uiqext − uip
dpqext

m(σpqext) = 0.

From (14) we obtain

urqext − urp
dpqext

− kβ
uiqext + uip

2 = grpq , (16)

uiqext − uip
dpqext

+ kβ
urqext + urp

2 = gipq ,

where grpq and gipq are values of real and imaginary part of
prescribed boundary function g evaluated on the exterior
edges belonging to N(p) in the following way

grpq =
1

m(σpqext)

∫︁
σpqext

gr(s)ds, (17)

gipq =
1

m(σpqext)

∫︁
σpqext

gi(s)ds.

Now, from equations (16), we eliminate the unknown val-
ues ureqxt and uieqxt that we substitute in the initial equa-
tions (15) in the numerical fluxes along the exterior edges.
For more detailed description see section 4.

This way we create a system of linear algebraic equa-
tions, in which the matrix was of order 2nm . After solving
the system, both the real and imaginary part are obtained
for each finite volume.

3 Properties of the Weak and
Numerical Solution

Let the data in (5) fulfil the following assumptions

• g = gr + igi and gr ∈ L2(∂D), gi ∈ L2(∂D)
• β is real number

Definition:
A complex valued function A = Ar + iAi is aweak so-

lution of (3)-(5) if

• Ar ∈ H1(D)) and Ai ∈ H1(D)
• the following holds∫︁
D

∇A∇vdx =
∫︁
∂D

(g + iβkA) vds + k2
∫︁
D

Avdx (18)

∀v = vr + ivi , vr ∈ H1(D), vi ∈ H1(D)

If we nowpose in (18) v = Ā = Ar− iAi, we immediately
have

k2
(︁
||Ar||2L2(D) + ||Ai||2L2(D)

)︁
+
∫︁
∂D

(︁
grAr + giAi

)︁
ds+

i
∫︁
∂D

(︁
giAr − grAi

)︁
ds = ||∇Ar||2L2(D)+

||∇Ai||2L2(D) + iβk
∫︁
∂D

(︁
(Ar)2 + (Ai)2

)︁
ds,

or

k2||A||2L2(D) +
∫︁
∂D

gĀds = ||∇A||2L2(D) + iβk||A||
2
L2(∂D). (19)

We remind that the computational domain we assume in
this section is rectangle, and our discretization mesh con-
sists of squares with the edge of size h. We have m finite
volumes along one direction of the domain D, and n along
the another direction, sowehave n×m finite volumes. Thus
we have

m(p) = h2, m(σpq) = h, dpq = h.

We can express our numerical scheme in a similar way as
it was done for the continuous equation.We obtain for p ∈
Th,int

k2uph2 +
∑︁
q∈N(p)

(uq − up) = 0, (20)

and for p ∈ Th,ext

k2uph2 +
∑︁

q∈N(p)int

(uq − up) +
∑︁

qext∈N(p)ext

(uqext − up) = 0.

(21)

We can approximate the boundary condition by
uqext − up

h + ikβupq = gpq , (22)

where

upq =
uqext + up

2 .

Substituting uqext − up in (21) from (22) we have

k2uph2 +
∑︁

q∈N(p)int

(uq − up)+ (23)
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∑︁
qext∈N(p)ext

(gpq − ikβupq) h = 0.

Nowwemultiply each of the equation (20) and (21) by ūp =
urp − iuip, and add them together. Then for the second term
using the usual finite volume property [6] we have

k2
∑︁
p∈Th

u2ph2 +
∑︁

σpq∈Eext

gpq ūph =

∑︁
σpq∈Eint

(uq − up)2 + ikβ
∑︁

σpq∈Eext

upq ūph.

which can be rearranged in the form

k2
∑︁
p∈Th

u2ph2 +
∑︁

σpq∈Eext

gpq ūpqh =

∑︁
σpq∈Eint

(uq − up)2 + ikβ
∑︁

σpq∈Eext

u2pqh + I,

where

I =
∑︁

σpq∈Eext
(gpq − ikβupq) (ūpq − ūp)h.

First we notice

(ūpq − ūp) =
1
2(ūqext − ūp),

and using boundary approximation (22) for real and imag-
inary part we have

(ūpq − ūp) =
1
2 ḡpqh + ikβhūpq .

Thus for the term I we obtain

I = 1
2h

∑︁
σpq∈Eext

(gpq − ikβupq) (ḡpqh + ikβhūpq) =

1
2h

∑︁
σpq∈Eext

(︁
g2pq + k2β2u2pq + 2kβ

(︁
grpqurpq − gipquipq

)︁
h
)︁
.

Now we use the discrete H1 seminorm defined in [6]

||u||1Th =

⎛⎝ ∑︁
σ∈Eint

m(σ)
dσ

(Dσu)2
⎞⎠ 1

2

, (24)

whereDσu = |up−uq|, σ = σpq. If we nowuse the definition
of a constant numerical solution (8), we can write

k2||uh||2L2(D) +
∑︁

σpq∈Eext

gpq ūpqh = (25)

||urh||21Th + ||uih||21Th + ikβ
∑︁

σpq∈Eext

u2pqh+

h
2

∑︁
σpq∈Eext

(︁
g2pq + k2β2u2pq + 2kβ

(︁
grpqurpq − gipquipq

)︁)︁
h.

4 Numerical Scheme for Regular
Mesh

We use the same computational domain as in the previ-
ous section. Nowwe derive numerical schemes for the real
and imaginary part of the complex valued approximation
function.

We have two types of the linear algebraic equations.
The first belongs to the finite volumes from the set Th,int,
and second for the finite volumes from the set Th,ext. In the
first case we have for both, real and imaginary part of the
numerical solution, the following equations

k2urph2 +
∑︁
q∈N(p)

(urq − urp) = 0, (26)

k2uiph2 +
∑︁
q∈N(p)

(uiq − uip) = 0.

For the second case we have some sides (one or two) of the
finite volume that belongs to the boundary of the domain
D. Here we use the boundary condition and the approxi-
mation described above

urqext − urp
h − kβ

uiqext + uip
2 = grpq , (27)

uiqext − uip
h + kβ

urqext + urp
2 = gipq .

From these equations we can easily eliminate the un-
known values urqext , uiqext:

urqext =
4hgrpq + 2h2kβgipq + 4hkβuip + (4 − h2k2β2)urp

4 + h2k2β2 ,

uiqext =
4hgipq − 2h2kβgrpq + (4 − h2k2β2)uip − 4hβkurp

4 + h2k2 .

Substituting these values into (15) for p ∈ Th,ext we have

k2urph2 +
∑︁

q∈N(p)int

(urq − urp)+ (28)

∑︁
qext∈N(p)ext

(︁
Aurp − Buip + Cgrpq + Dgipq

)︁
= 0,

k2uiph2 +
∑︁

q∈N(p)int

(uiq − uip)+

∑︁
qext∈N(p)ext

(︁
Auip + Burp + Cgipq − Dgrpq

)︁
= 0,

where

A = −4 + k
2h2β2

4 + k2β2h2 , B = 4kβ2h
4 + k2β2h2 , (29)

C = 4h
4 + k2β2h2 , D = 2kβ2h2

4 + k2β2h2 .

In this way we obtain linear system of algebraic equation
with unknowns urp, uip, p ∈ Th.
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Figure 1: Exact solution (left real part, right imaginary part) for the
wavenumber 10rad/m

Figure 2: Numerical solution (left real part, right imaginary part) for
the wavenumber 10rad/m, n = 10

Figure 3: Numerical solution (left real part, right imaginary part) for
the wavenumber 10rad/m, n = 40

Figure 4: Exact solution (left real part, right imaginary part) for the
wavenumber 25rad/m

Figure 5: Numerical solution (left real part, right imaginary part) for
the wavenumber 25rad/m, n = 10

5 Numerical experiments
This section describes the results of the code, which solves
the Helmholtz equation by the Finite volume method on
the square domain of size 1 metre.

Figure 6: Numerical solution (left real part, right imaginary part) for
the wavenumber 25rad/m, n = 40

Figure 7: Numerical solution (left real part, right imaginary part) for
the wavenumber 25rad/m, n = 60

5.1 Experiment 1 - boundary conditions with
β = 1

First to be presented is the solution of (3)-(5) with β = 1
in (5), so Robin boundary conditions are prescribed for all
sides of domain. For the beginning we must use the exact
solution used in [3]

u(x, y) = ei(k1x+k2y) = (30)
cos(k1x + k2y) + i sin(k1x + k2y),

where the values k1, k2 are given by

k1 = k cos θ, k2 = k sin θ. (31)

The source function g was set so as to comply with the ex-
act solution (30). Firstly we present results for θ = π

2 , for
two different wavenumbers. Figure 1 shows the exact solu-
tion for k = 10rad/m, extra for real and imaginary part.
Figure 2 depicts the numerical solution to the Helmholtz
equation for the number of discretizing points n = 10 (i.e.
100 finite volumes), and the Figure 3 for n = 40. It is clear
that with the finer discretization the results aremore accu-
rate.

Next figures are dedicated to the bigger wavenumber.
It is known that higher frequencies (i.e. bigger wavenum-
bers) require finer discretization, if we want to get results
close to the exact solution [7]. Figure 4 shows the exact so-
lution for the wavenumber 25rad/m.
Figures 5 and 6 depict the numerical solution for 10 and 40
discretizing points.
It is clear that it is more difficult to approximate this func-
tion. Figure 7 shows plots for n = 60, where the results get
very close to the exact solution.
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Table 1: Values of the L2 error, θ = π
2

k = 10rad/m k = 25rad/m
n 10 40 60 10 40 60
L2
error

0.2653 0.0143 0.0063 1.3518 0.2324 0.1000

Table 2: Values of EOC for the wavenumber 10rad/m, θ = π
2

n L2 error α
10 0.265255 2.1719220 0.058864 2.0393540 0.014320 2.0101180 0.003555

Figure 8: Exact solution (left real part, right imaginary part) for the
wavenumber 10rad/m

Figure 9: Numerical solution (left real part, right imaginary part) for
the wavenumber 10rad/m, n = 10

The L2 error was calculated by the formula√︁∑︁
((urp − urexact)2m(p)2 + (uip − uiexact)2m(p)2). (32)

Here urp and uip are the numerically calculated values.
urexact and uiexact are the precise values calculated from the
exact solution. Table 1 shows the values.
The experimental order of convergence was calculated us-
ing the formula

L2 errorh < Chα , (33)

where h is the length of the finite volume. α will be then
calculated by

α = log2
L2 errorh
L2 error2h

(34)

Figure 10: Numerical solution (left real part, right imaginary part) for
the wavenumber 10rad/m, n = 40

Figure 11: Exact solution (left real part, right imaginary part) for the
wavenumber 25rad/m

Figure 12: Numerical solution (left real part, right imaginary part) for
the wavenumber 25rad/m, n = 10

Figure 13: Numerical solution (left real part, right imaginary part) for
the wavenumber 25rad/m, n = 40

Figure 14: Numerical solution (left real part, right imaginary part) for
the wavenumber 25rad/m, n = 60
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Table 3: Values of the L2 error, θ = π
4

k = 10rad/m k = 25rad/m
n 10 40 60 10 40 60
L2
error

0.1425 0.0082 0.0036 1.5407 0.1238 0.0541

Table 4: Values of EOC for the wavenumber 10rad/m, θ = π
4

n L2 error α
10 0.142520 2.0958420 0.033340 2.0235640 0.008200 2.0063580 0.002041

and from the theory it is known that its value is expected
to be converging to 2. Table 2 shows the results for the
wavenumber 10rad/m.

Next figures 8 - 14 are for the value of θ = π
4 . First we

show the exact solution and the results of the numerical
experiments for the wavenumber 10rad/m (Figure 8 - 10).
Lastly, figures 11 - 14 depict the solutions for thewavenum-
ber 25rad/m.
Presented figures and tables (3 and 4) show, that the be-
haviour is very similar to the previous value of θ.

5.2 Experiment 2 - mixed boundary
conditions

The final part of the paper shows the results of program
with changed boundary conditions. The domain is divided
in two parts

∂D = ∂DRobin ∪ ∂DNeumann . (35)

The boundary conditions on three sides of the boundary
∂DRobin are prescribed as in the previous case, where β = 1
in (5). For part of the right side of the domain

∂DNeumann = ∂D \ ∂DRobin , (36)

∂DNeumann = {[x, y] ∈ ∂Ω; x = 1; 0.25 < y, 0.75}, (37)

the value of β = 0 in (5), so zero Neumann boundary con-
ditions were obtained

∂A
∂n = 0. (38)

This combination of Robin andNeumannboundary condi-
tions can represent for example a column (i.e. a hard wall

Table 5: Values of the L2 error for case with changed boundary con-
ditions, θ = π

2

k = 10rad/m k = 25rad/m
n 10 40 60 10 40 60
L2
error

0.2757 0.0150 0.0066 1.2876 0.2376 0.1024

Table 6: Values of EOC for the wavenumber 10rad/m for the case
with changed boundary conditions, θ = π

2

n L2 error α
10 0.275654 2.1573420 0.061793 2.0415240 0.015010 2.0106180 0.003725

barrier) standing in the free space. Exact solution is the
same as in the previous case (30). The following tables 5
and 6 show the values of L2 error and EOC.

6 Conclusion
We have studied the numerical solution to the Helmholtz
complex-valued equation. Our numerical solution is ob-
tained using classical Finite volmemethod. For discretiza-
tion of the boundary condition, which is of Robin type,
we have used aditional exterior finite volumes by eliminat-
ing values on them. Properties of the weak solution and
numerical solution are derived. Numerical experiments of
various cases with changing boundary conditions show
experimental order of convergence for the numerical so-
lution to the exact one.
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