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Abstract: In thiswork,we study vibrations of three-layered
cylindrical shells with one ring support along its length.
Nature of material of the central layer is a functionally
graded material (FGM) type. The considered FGM is of
stainless steel and nickel. The internal and external lay-
ers are presumed to be made of isotropic material i.e.,
aluminum. The functionally graded material composition
of the center layer is assorted by three volume fraction
laws (VFL) which are represented bymathematical expres-
sions of polynomial, exponential and trigonometric func-
tions. The implementation of Rayleigh-Ritz method has
been done under the Sanders’ shell theory to obtain the
shell frequency equation. Natural frequencies (NFs) are at-
tained for the present model problem under six boundary
conditions. Use of characteristic beam functions is made
for the estimation of the dependence of axial modals. The
impact of layermaterial variationswith ring support is con-
sidered for many ring positions. Also the effect of volume
fraction laws is investigateduponvibration characteristics.
This investigation is performed for various physical param-
eters. Numerous comparisons of values of shell frequen-
cies have been done with available models of such types
of results to verify accuracy of the present formulation and
demonstrate its numerical efficiency.
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1 Introduction
A cylindrical shell is a significant element in structural
dynamics. Different mechanical aspects of such types of
shells are studied for their practical applications, shell vi-
bration is one of them. This investigation of these shells
play a paramount part in the fields of technology, like
pressure vessels, nuclear power plants, piping system and
other marine and aircraft applications. Many researches
[1–8] have been done the studies on vibrational perfor-
mance of functionally graded (FG) cylindrical shells (CSs)
and influence on the frequencies of layered shells due
to edge conditions has been studied by Loy and Lam [9].
The core of all the previous research work has been elab-
orated by Love’s thin shell theory. Furthermore Loy and
Lam [10] gave an investigation of frequency characteristics
of thin walled cylindrical shell (CS) under ring supports
for several end conditions by using Sanders’ shell theory
and Ritz formulation. Xiang et al. [11] used Goldenveizer-
Novozhilov theory of shells to determine the exact vibra-
tion solution of the same circular cylinders supported
by multiple transitional rings. The state-space technique
was applied to obtaine shell governing equations for shell
splinter and the influences of edge conditions were at-
tained. The effects on frequency parameters for different
locations of ring supports were observed. The vibration be-
havior of open circular cylinders grounded on intermedi-
ary ring elastic support was analyzed by Zhang and Xiang
[12]. They assessed the influence for number of intermedi-
ate ring assistances, their positions, associated boundary
conditions and variations included angles on the behav-
ior of the shells. Swaddiwudhipong et al. [13] explained
the study of vibration of CSs with middle supports by ap-
plying the Ritz method to approximate their frequencies
and mode shapes. An analysis of vibration frequency for
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a FG shell was done by Arshad et al. [14] with effect of
different fraction laws by applying Love’s first order shell
theory. Another study about the frequency analysis of bi-
layered CSs has been presented by the same authors in
[15]. The shells were assembled from functionally graded
materials (FGMs) as well as isotropic materials. The influ-
ences of particular shell configurations on NFs of cylinder-
shaped shells were scrutinized. The solidity of the same
shells made up of FG structure layer associated with ax-
ial load placed on theWinkler-Pasternak foundations was
analyzed by Sofiyev and Avear [16]. Arshad et al. [17] ex-
plored vibration properties of bi-layered cylinder-shaped
shell with both layers made up of FG layers by consider-
ing constant thickness. Law-II was exploited to study the
material distribution of FGMs. They studied the effect on
vibrations of double layered FG shell for various shell con-
straints, edge conditions and exchange the essential mate-
rials making FGMs. Zhang et al. [18] investigated the shell
free vibrations for a number of edge conditions by using
a differential quadrature type procedure. Naeem et al. [19]
analyzed vibration behavior of the tri-layered FGM circu-
lar cylinders. They employed the Ritz method and used
the Love’s shell theory. Governing mathematical expres-
sionwas in an integral form by considering the shell strain
and kinetic energy relations. Axialmodal dependencewas
examined with solution functions of beam equation. Ar-
shad et al. [20] made a study of FG three-layered cylinder-
shaped shells for free vibration under a ring support. Their
work deals with the effect of ring supports, located at dif-
ferent positions along the length of cylinder-shaped shell
for different edge conditions. The analysis was based on
Love’s thin shell theory. Rayleigh-Ritz formulationwas em-
ployed to obtain solutions of the problem. The vibration re-
sponse of tri-layered shells was investigated by Li et al. [21].
Ghamkhar et al. [22] studied vibration frequency analysis
for three layered cylinder shaped shell with FGM central
layer. The effect on shell vibrations for different thickness
of the central layer were examined by them. The analysis
was based on sander’s shell theory and Ritz mathematical
approach. Functionally graded material distribution was
controlled with trigonometric volume fraction law.
In this work, vibration frequencies are analyzed for three
layered cylindrical shells. These shells are assembled from
three layers assuming that the central is made of function-
ally graded materials, internal and external layers remain
isotropic type of materials. Material of the central layer
is controlled by following volume fraction laws, polyno-
mial (Law-I), exponential (Law-II) and trigonometric (Law-
III). These laws are framed by polynomial, exponential
and trigonometric functions. These laws vary the material
composition in the radial (through-thickness) direction.

This material variation yields a variety of frequency spec-
tra. Stability of these shells is solidified by ring supports
around the tangential directions. Sanders’ thin shell the-
ory is adopted for shell governing equations. These equa-
tions are solved by applying Rayleigh Ritz technique in-
volving an energy variation functional. Axial deformation
functions are estimated by the solution functions of beam
equation. Such functions are taken to meet the edge con-
ditions. An effect of layer thickness configurations is ob-
served on shell natural frequencies. Results are obtained
to examine the influence of ring supports at different posi-
tions along the shell length.

2 Theoretical considerations
Consider a cylinder-shaped shell sketched in Figure 1.Here
length of the shell is denoted byL, thickness is denoted by
H and the mean radius symbolized byR. They represent
the shell geometrical quantities. A cylindrical coordinate
system (x, θ, z) is framed at the shell middle reference sur-
face with x, θ and z as the axial, angular and thickness
coordinates respectively. Deformation displacement func-
tions are designatedbyu1(x, θ, t), u2(x, θ, t) and u3(x, θ, t)
which denote the displacement deformations in the longi-
tudinal, tangential and transverse directions respectively.
The strain energy ℑ for a thin vibrating CS as in [10] is de-

θ
θ

θ θ θ

θ

Figure 1: Geometry of CS with a ring support that its location varies
along the length

scribed below:

ℑ = 1
2

L∫︁
0

2π∫︁
0

{K}′[C]{K}Rdθdx (1)

where

{K}′ = {∈1,∈2,∈12, κ1, κ2, 2κ12} (2)
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and∈1 ,∈2 and∈12 denote strains which are related to the
reference surface and κ1, κ2 and κ12 represent curvatures.
Prime (′) indicates the matrix transposition.
The entries of the matrix [C] are furnished as:

[C] =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x11 x12 0 y11 y12 0
x12 x22 0 y12 y22 0
0 0 x66 0 0 y66
y11 y12 0 z11 z12 0
y12 y22 0 z12 z22 0
0 0 y66 0 0 z66

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3)

where xij represent the extensional, yij, coupling and zij ,
bending stiffness. (i, j = 1, 2 and 6). They are defined by
the following formulas:

{xij , yij , zij} =
H/2∫︁

−H/2

Qij
{︁
1, z, z2

}︁
dz (4)

The reduced stiffnessQij for isotropicmaterials is stated as
[10]:

Q11 = Q22 = E(1 − µ2)−1, (5)
Q12 = µE(1 − µ2)−1, Q66 = E[2(1 + µ)]−1

Here E represents the Young’s modulus and µ denotes the
Poisson ratio. The matrix yij = 0 for isotropic circular
shaped CS and yij ≠ 0 for a FG cylindrical shell; its value
determined by the arrangement and properties of its con-
stituent materials. After substituting the expressions from
(2) and (3) in (1), ℑ is rewritten as:

ℑ = 1
2

L∫︁
0

2π∫︁
0

{x11 ∈2
1 +x22 ∈2

2 +2x12 ∈1∈2 (6)

+ x66 ∈2
12 +2y11 ∈1 κ1 + 2y12 ∈1 κ2 + 2y12 ∈2 κ1

+ 2y22 ∈2 κ2 + 4y66 ∈12 κ12 + z11κ21
+ z22κ22 + 2z12κ1κ2 + 4z66κ212}Rdθdx

Following expressions are taken from [23] and written as

{∈1,∈2,∈12} (7)

=
{︂
∂u1
∂x , 1R

(︂
∂u2
∂θ + u3

)︂
,
(︂
∂u2
∂x + 1

R
∂u1
∂θ

)︂}︂

{κ1, κ2, κ12} =
{︂
−∂

2u3
∂x2 , − 1

R2
(︂
∂2u3
∂θ2 −

∂u2
∂θ

)︂
, (8)

− 1R

(︂
∂2u3
∂x∂θ −

3
4
∂u2
∂x + 1

4R
∂u1

∂θ.

)︂}︂

By substituting expressions (7) and (8) into equation (6),
then ℑ becomes as:

ℑ = R2

2π∫︁
0

L∫︁
0

[︃
x11

(︂
∂u1
∂x

)︂2
+ x22R2

(︂
∂u2
∂θ + u3

)︂2
(9)

+ 2x12
R

∂u1
∂x

(︂
∂u2
∂θ + u3

)︂
+ x66

(︂
∂u2
∂x + 1

R
∂u1
∂θ

)︂2

− 2y11
(︂
∂u1
∂x

)︂(︂
∂2u3
∂x2

)︂
− 2y12
R2

(︂
∂u1
∂x

)︂(︂
∂2u3
∂θ2 −

∂u2
∂θ

)︂
− 2y12

R

(︂
∂u2
∂θ + u3

)︂(︂
∂2u3
∂x2

)︂
− 2y22
R3

(︂
∂u2
∂θ + u3

)︂(︂
∂2u3
∂θ2 −

∂u2
∂θ

)︂
− 4y66

R

(︂
∂u2
∂x + 1

R
∂u1
∂θ

)︂(︂
∂2u3
∂x∂θ −

3
4
∂u2
∂x + 1

4R
∂u1
∂θ

)︂
+ z11

(︂
∂2u3
∂x2

)︂2
+ z22R4

(︂
∂2u3
∂θ2 −

∂u2
∂θ

)︂2

+ 2z12
R2

(︂
∂2u3
∂x2

)︂(︂
∂2u3
∂θ2 −

∂u2
∂θ

)︂
+4z66R2

(︂
∂2u3
∂x∂θ −

3
4
∂u2
∂x + 1

4R
∂u1
∂θ

)︂2]︃
dxdθ

The kinetic energy T for a CS is expressed as:

T = 1
2

L∫︁
0

2π∫︁
0

ρt
[︃(︂

∂u1
∂t

)︂2
(10)

+
(︂
∂u2
∂t

)︂2
+
(︂
∂u3
∂t

)︂2
]︃
Rdθdx

here time variable is denoted by t and themass density per
unit length is represented by ρt and is written as:

ρt =
H/2∫︁

−H/2

ρdz (11)

where ρ is mass density.
The Lagrange energy functional Γ for a CS is defined as a
function of the kinetic and strain energies as:

Γ = T − ℑ (12)

3 Numerical Procedure
The present cylindrical shell is solved by the Rayleigh-
Ritz technique. Its deformation displacement fields are ex-
pressed in terms of product of functions of space and time
variables. These functions for a CS with ring supports can
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be assumed in the longitudinal, tangential and transverse
directions as:

u1(x, θ, t) = amU(x) cos nθ sinωt (13)
u2(x, θ, t) = bmV(x) sin nθ sinωt
u3(x, θ, t) = cmW(x) cos nθ sinωt

here U(x) = dξ (x)
dx , V(x) = ξ (x), and W(x) = ξ (x)∏︀P

i=1(x −
ai)ℓi and ξ (x) signifies the axial function that fulfills end
point conditions. In the longitudinal direction at x = ai,
ithring support is present. Here ℓi = 1 and ℓi = 0 rep-
resents with and without a ring support respectively. n is
the circumferential wave number and ω is the angular vi-
bration frequency. The coefficients am , bm and cm signify
the vibration’s amplitudes in the x, θ and z directions re-
spectively andm is the axial half wave number in the axial
direction.ξ (x)is chosen for the axial deformation function
which is the characteristic beam function as in reference
[10]:

ξ (x) = β1 cosh(αmx) + β2 cos(αmx) (14)
− χm(β3 sinh(αmx) + β4 sin(αmx))

where the values of βi , (i = 1, 2, 3, 4),depend upon the
nature of the edge conditions and αm denotes the roots of
trigonometric or hyperbolic equations and the parameters,
χm ′s depend on values of αm.
Following dimensionless parameters are utilized to sim-
plify the problem.

U = U(x)H , V = V(x)H , W = W(x)
R (15)

xij =
xij
H , yij =

yij
H2 , zij =

zij
H3

α = R/L, β = H/R, X = x
L , ρt =

ρt
H

Now the expressions (13) are re-written as:

u1(x, θ, t) = amHU cos nθ sinωt (16)
u2(x, θ, t) = bmHV sin nθ sinωt
u3(x, θ, t) = cmRW cos nθ sinωt

After making substitutions of the expressions (16) and
their respective derivatives into the relations (9) and (10),
ℑmax and Tmax are obtained using the principle of conser-
vation of energy. By applying the principle of maximum
energy, the Lagrange functional, Γmax takes the following

form:

Γmax =
πHLR
2

⎡⎣R2ω2ρt

1∫︁
0

(︁
β2 (amU)2 + β2 (bmV)2 (17)

+ (cmW)2
)︁
dX −

1∫︁
0

{︂
α2β2x11

(︂
am dUdX

)︂2

+ x22 (−nβbmV + cmW)2 + 2αβx12
(︂
am dUdX

)︂
× (−nβbmV + cmW) + x66

(︂
αβbm dVdX + nβamU

)︂2

− 2α3β2y11

(︂
am dUdX

)︂(︂
c2m
d2W
dX2

)︂
− 2αβ2y12

×
(︂
am dUdX

)︂(︁
−n2cmW + nβbmV

)︁
− 2α2βy12

× (−nβbmV + cmW)
(︂
c2m
d2W
dX2

)︂
− 2βy22

(︀
− nβbmV + cmW

)︀ (︁
−n2cmW + nβbmV

)︁
− 4βy66

(︀
αβbm dVdX + nβamU

)︀
·
(︂
nαcm dWdX −

3αβ
4 bm dVdX + nβ4 amU

)︂
+ α4β2z11

(︂
c2m
d2W
dX2

)︂2

+ β2z22
(︁
−n2cmW + nβbmV

)︁2
+ 2α2β2z12

(︂
c2m
d2W
dX2

)︂
×
(︁
−n2cmW + nβbmV

)︁
+ 4z66

(︂
nαcm dWdX −

3αβ
4 bm dVdX + nβ4 amU

)︂2
}︃
dX

]︃

4 Formation of eigenvalue
frequency equation

The shell eigenvalue frequency equation is derived bymak-
ing a use of the Rayleigh-Ritz technique. The energy La-
grange functional Γmax is extremized with regard to vibra-
tion coefficients: am , bm and cm, we obtain the following
relations.

∂Γmax
∂am

= ∂Γmax
∂bm

= ∂Γmax
∂cm

= 0 (18)

A system of homogeneous simultaneous equations in
am , bm and cm is generated and is transformed into the
eigenvalue problem as.{︁

[K] − Ω2 [M]
}︁
X = 0 (19)
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where [K] is the stiffness matrix and [M]represents the
mass matrix and

Ω2 = R2ω2ρt (20)

and

X
′

= [am , bm , cm] (21)

The elements of [K] and [M] are given in the Appendix 1.
MATLAB software is used to solve the eigenvalue problem
(19) for the shell frequency spectra for various physical pa-
rameters.

5 Functionally graded materials
In practice of three layered cylindrical shell, its central
layer is fabricated by FGMs and isotropic is used for inter-
nal and external layers as shown in Figure 2. Here the stiff-
ness moduli are altered as:

xij = xint(I)ij + xcen(F)ij + xext(I)ij (22)

yij = yint(I)ij + ycen(F)ij + yext(I)ij

zij = zint(I)ij + zcen(F)ij + zext(I)ij

where i,j=1, 2, 6 and superscript int(I), ext(I) represent the
isotropic internal and external layers and cen(F) denotes
the central FGM layer. The functionally graded materials
contain two essential materials. These materials are stain-
less steel and nickel. Thematerial parameters for stainless
steel material are: E2, µ2,ρ2 and for nickel material are:
E1, µ1,ρ1. The thickness of each layer is presumed to be
H/3. Then the actual material quantities for FGM layer are

κ κ κ

κ κ κ

κ κ κ
κ κ κ

κ κ κ κ θ

θ θ

κ κ κ θ θ

θ θ

θ

θ θ

θ θ

θ

θ θ θ

θ θ θ

θ θ

θ θ

θ θ θ

θ

Figure 2: Cross-section of three-layered CS.

given as:

EF = [E1 − E2]
(︂
6z + H
2H

)︂N
+ E2 (23a)

µF = [µ1 − µ2]
(︂
6z + H
2H

)︂N
+ µ2 (23b)

ρF = [ρ1 − ρ2]
(︂
6z + H
2H

)︂N
+ ρ2 (23c)

The material properties for middle FGM layer vary from
z = −H/6 to H/6. From the relations (23a-c), the effective
material properties become EF = E2, µF = µ2 and ρF =
ρ2 at z = −H/6 where for z = H/6 material properties
becomeEF = E1, µF = µ1 and ρF = ρ1. Thus forz = −H/6 ,
the shell is contained only stainless steel whereas for z =
H/6 consisted of nickel material. In a FGM shell, the dis-
tribution of materials is controlled by various volume frac-
tion laws. Three volume fraction laws are expressed in
mathematical form. If z symbolizes the basic shell thick-
ness variable then the volume fraction law VF of a FGM is
formulated as following function [24]

VF =
(︂
6z + H
2H

)︂N
(24)

where H represents the thickness of cylinder-shaped shell
and N denotes the power law proponent which may take
values from zero to infinity. A volume fraction law formu-
lated by Arshad et al. [14] as:

VF = 1 − e−( 6z+H2H )N (25)

where e be the standard irrational natural exponential
base number. The material properties are written as:

EF = [E1 − E2]
[︁
1 − e−( 6z+H2H )N

]︁
+ E2 (25a)

µF = [µ1 − µ2]
[︁
1 − e−( 6z+H2H )N

]︁
+ µ2 (25b)

ρF = [ρ1 − ρ2]
[︁
1 − e−( 6z+H2H )N

]︁
+ ρ2 (25c)

Trigonometric volume fraction law for a FGM circular CS is
stated as:

VF1 = sin2
[︃(︂

6z + H
2H

)︂N]︃
, (26)

VF2 = cos2
[︃(︂

6z + H
2H

)︂N]︃
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Table 1: Comparison of frequency parameter ∆ = ωR
√︁(︀

1 − µ2
)︀
ρ/E for simply-supported isotropic CS. (µ = 0.3,m = 1, H/R = 0.05)

L/R n n n n
1 2 3 4

20 Zhang et al.[18] 0.016102 0.039271 0.109811 0.210277
20 Present 0.0161029 0.0392713 0.1098115 0.2102771
20 Difference % 0.006 0.001 0.001 0.000

Table 2: Comparison of frequency parameter ∆ = ωR
√︁(︀

1 − µ2
)︀
ρ/E for a clamped isotropic shell (µ = 0.3, H/R = 0.05)

L/R n n n n
1 2 3 4

20 Zhang et al.[18] 0.03285 0.040638 0.109973 0.210324
20 Present 0.03440 0.040772 0.110005 0.210376
20 Difference % 4.7 0.33 0.03 0.02

Table 3: Comparison of natural frequencies (Hz) for type I FGM cylindrical shell with simply supported edges. (m = 1, H/R = 0.002, L/R =
20)

Loy et al. [1] Present
N N

n 0.5 1 2 0.5 1 2
1 13.321 13.211 13.103 13.321 13.210 13.103
2 4.5168 4.4800 4.4435 4.5098 4.4746 4.4396
3 4.1911 4.1569 4.1235 4.1520 4.1356 4.1154
4 7.0972 7.0384 6.9820 7.0189 7.0000 6.9721
5 11.336 11.241 11.151 11.210 11.181 11.138

Here

VF1 + VF2 = 1 (26a)

The material parameters for FG cylindrical shell are writ-
ten as:

EF = [E1 − E2] sin2
[︃(︂

6z + H
2H

)︂N]︃
+ E2 (26b)

µF = [µ1 − µ2] sin2
[︃(︂

6z + H
2H

)︂N]︃
+ µ2 (26c)

ρF = [ρ1 − ρ2] sin2
[︃(︂

6z + H
2H

)︂N]︃
+ ρ2 (26d)

6 Results and discussion
To check the validity of the current work, results for sim-
ply supported and clamped CSs with no ring support are

compared with others available in the literature. A good
agreement is found among the present results and those
obtained by other techniques. In Table 1, a comparison of
frequency parameters ∆ = ωR

√︁(︀
1 − µ2

)︀
ρ/E for simply

supported isotropic CS is presented with those in Zhang
et al. [18]. Table 3 represents the NFs (Hz) for a simply sup-
ported FGMcylindrical shell of type 1 comparedwith those
obtained by Loy et al. [1] and for power law exponents N =
0.5, 1, 2. The frequency at n = 3 which is about 0.9%, 0.5%,
and 0.1% minimum than those available in [1]. It is deter-
mined from the comparison ofNFs that the currentmethod
is efficient and gives accurate results. Two types of CS are
described in Table 4.whereMA ,MB and MC represent Alu-
minum, Stainless Steel and Nickel respectively. Material
properties of the isotropic material as well as FGM con-
stituents are given in reference [1] and [2]. Different layer
thicknesses were used for the analysis of three-layered
FGM cylindrical shell as shown in Table 5.

Table 6-8 show the variation of NFs (Hz) versus n for
three layered FGMs type I CSwith ring supports. Thickness
of the center layer is presumed to be H/3, H/2 and 3H/5
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Table 4: Types of shell w. r. t the arrangements of shell layers

Types Internal
Layer

Central FGM Layer External
Layer

Type I MA MB/MC MA
Type II MA MC/MB MA

Table 5: Thickness variation of the FGM shell layers

Thickness
Patterns

Inner
isotropic
Layer

Central FGM
Layer

External
isotropic
Layer

Case 1 H/3 H/3 H/3
Case 2 H/4 H/2 H/4
Case 3 H/5 3H/5 H/5

Figure 3: Variation of NFs (Hz) of three-layered FGM CS versus ring
supports position ‘a’ at different L/R ratios for SS − SS edge condi-
tions. (m = 1, n = 1, H/R = 0.005 and N = 2)

for Tables 6-8 respectively. In these Tables, the influence
of three VFL is perceived for six edge conditions: simply
supported-simply supported (SS − SS), clamped-clamped
(C−C), free-free (F−F), clamped-simply supported (C−SS),
clamped-free (C − F) and free-simply supported (F − SS).It
is noticed that the NF increased with the increase of n. It
is also examined that the C − C edge condition has the
maximum NFs (Hz) and C − F has the really minimum. It
is studied that natural frequencies increasing swiftly from
n is equal to 1 to 2 then its increasing steadily. In Table 6,
Law-I gets the extreme frequencies (Hz) and Law-III takes
the lowest frequencies (Hz). Table 7 & 8 represent the vari-
ation of NFs (Hz) of FGM shell by using Law-I for six bound-
ary conditions.

Table 9-11 describe the variation of NFs (Hz), effects
of shell configurations on NFs (Hz) versus n for FGM shell
type II with ring supports. Thickness of the center layer is
supposed as same as for Table 6, 7 and 8 respectively. Law-
I gets the lowest values and Law-III takes extreme values
of NFs (Hz) in Table 9.
Table 12 represents the natural frequency (Hz) of three lay-
ered CS of case1 versus nwith andwithout ring support for
SS−SS boundary conditions. The behavior of frequency re-
mains same according to the circumferential wave number
n and volume fraction laws for both CSs with and without
ring support. Table 12 shows that the NFs of CS with ring
support are higher than frequencies of the CS without ring
support.
Table 13 demonstrates NFs (Hz) with ratios (L/R) for type I
& case 1 FGM shell. The natural frequencies decreased less
than0.5%with the increasing values ofN. Natural frequen-
cies decreased 11% and 14% when L/R becomes 10 and 20
respectively.
The thickness of each layer of the shell for Figure 3-8
is H/3. Natural frequency varies with respect to the ring
support position and this influence changes according to
edge conditions. Figure 3 shows the variation of NF of
SS − SS shell with the position of ‘a’ for different L/R ra-
tios. Natural frequencies are obtained for law-I, law-II and
law-III. The movements of these VFL, for frequency curve
at a = 0, the values are 328.96 , 328.51, 327.88, at a = 0.5,
the values are 593.99, 593.17, 592.85 and at a = 1,values
are 328.97, 328.51, 327.89 for law-I, law-II and law-III respec-
tively. The behavior of the frequency curve is increasing
from a = 0 to a = 0.5 and decreasing from a = 0.5 to
a = 1. So it is a symmetric curve. Similar behavior studied
for L/R =10, 20 and also for C−C and F−F edge conditions.
Moreover, law-II is consisted between the law-I & III. Fre-
quency curves are overlapping because the values for all
laws are so closed to each other. So for other boundary con-
ditions law-III is selected to draw because it attains mini-
mum frequency values. Figure 4 shows the same results
for clamped-clamped edge condition. Frequencies are sig-
nificantly high for clamped-clamped end condition. In Fig-
ure 5 variation of NFs (Hz) of three-layered FGM cylindri-
cal shell is plotted against the ring supports position. So
the frequency value at a = 0, is 260.46 and the extreme
NF (Hz) for law-III lies at a = 0.6, frequency is 683.25. The
last value of frequency curve is 278.24 lies at a = 1,. Simi-
lar behavior displays for L/R = 10 and 20. In Figure 6. The
frequency curve is increasing gradually from a = 0 to 0.5
thengets its extremevalue at a = 0.8, after this curve starts
to decrease. Here the frequency curve is not chime formed
because of different edge condition. It is noticed that the
behavior of NFs curves for all ratios and laws are same. Fig-
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Table 6: Variation of NFs (Hz) for Type I & Case 1 FGM CS against n with ring support. (L/R = 50,m = 1, H/R = 0.007, a = 0.5, N = 1)

n SS − SS C − C F − F C − SS C − F F − SS
Law I 1 505.393 513.611 503.363 507.878 278.876 503.485

2 848.181 848.183 48.182 762.667 349.123 817.553
3 848.297 848.3 48.299 773.636 367.637 822.354
4 848.604 848.61 848.608 777.258 375.168 823.97
5 849.247 849.256 849.253 779.396 379.799 825.189
6 850.411 850.424 850.42 781.42 384.072 826.677
7 852.321 852.338 852.333 783.941 389.226 828.811
8 855.239 855.261 855.254 787.392 396.115 831.918
9 859.46 859.488 859.479 792.16 405.447 836.328
10 865.311 865.346 865.335 798.631 417.851 842.389

Law II 1 504.242 512.441 502.216 506.72 278.238 502.338
2 846.248 846.25 846.249 760.929 348.327 815.69
3 846.377 846.38 846.379 771.884 366.804 820.492
4 846.701 846.706 846.705 775.514 374.326 822.122
5 847.366 847.374 847.372 777.669 378.96 823.36
6 848.556 848.569 848.565 779.715 383.24 824.874
7 850.497 850.514 850.509 782.264 388.404 827.038
8 853.45 853.472 853.465 785.747 395.305 830.179
9 857.711 857.739 857.73 790.55 404.65 834.627
10 863.605 863.64 863.629 797.06 417.066 840.73

Law III 1 503.416 511.602 501.394 505.891 277.779 501.515
2 844.84 844.841 844.841 759.663 347.748 814.332
3 844.949 844.952 844.951 770.583 366.186 819.108
4 845.246 845.252 845.25 774.182 373.684 820.709
5 845.875 845.884 845.881 776.302 378.294 821.913
6 847.022 847.035 847.031 778.307 382.549 823.383
7 848.911 848.928 848.922 780.806 387.683 825.495
8 851.802 851.825 851.817 784.231 394.548 828.577
9 855.993 856.021 856.012 788.969 403.85 832.956
10 861.808 861.843 861.831 795.404 416.218 838.981

Table 7: Variation of NFs (Hz) for Type I & Case 2 FGM CS against n with ring support. (L/R = 50,m = 1, H/R = 0.007, a = 0.5, N = 1)

n SS − SS C − C F − F C − SS C − F F − SS
1 499.678 507.874 497.709 502.171 276.964 497.805
2 842.358 842.36 842.359 757.432 346.726 811.926
3 842.477 842.481 842.48 768.329 365.114 816.711
4 842.788 842.793 842.792 771.93 372.594 818.322
5 843.433 843.441 843.438 774.059 377.193 819.538
6 844.595 844.608 844.603 776.074 381.434 821.022
7 846.498 846.515 846.509 778.583 386.546 823.147
8 849.4 849.422 849.415 782.012 393.376 826.237
9 853.595 853.623 853.613 786.748 402.625 830.619
10 859.406 859.44 859.428 793.172 414.918 836.637



Vibration Analysis of a Three-Layered FGM Cylindrical Shell | 595

Table 8: Variation of NFs (Hz) for Type I & Case 3 FGM CS against n with ring support. (L/R = 50,m = 1, H/R = 0.007, a = 0.5, N = 1)

n SS − SS C − C F − F C − SS C − F F − SS
1 496.300 504.482 494.366 498.797 275.838 494.447
2 838.929 838.931 838.930 754.349 345.315 808.612
3 839.052 839.055 839.054 765.205 363.630 813.389
4 839.367 839.372 839.371 768.797 371.083 815.000
5 840.017 840.026 840.023 770.925 375.671 816.220
6 841.186 841.199 841.195 772.943 379.906 817.709
7 843.096 843.113 843.108 775.456 385.014 819.840
8 846.006 846.028 846.021 778.891 391.839 822.937
9 850.209 850.236 850.227 783.633 401.082 827.326
10 856.027 856.061 856.050 790.062 413.365 833.350

Table 9: Variation of NFs (Hz) for Type II & Case 1 FGM CS against n with ring support. (L/R = 50,m = 1, H/R = 0.007, a = 0.5, N = 1)

n SS − SS C − C F − F C − SS C − F F − SS
Law I 1 505.880 514.077 503.833 508.352 278.623 503.965

2 847.410 847.411 847.411 761.974 348.805 816.815
3 847.519 847.522 847.521 772.927 367.301 821.601
4 847.817 847.823 847.821 776.537 374.822 823.206
5 848.448 848.457 848.455 778.664 379.448 824.413
6 849.598 849.612 849.608 780.676 383.719 825.889
7 851.492 851.513 851.508 783.185 388.875 828.010
8 854.393 854.422 854.415 786.624 395.770 831.104
9 858.598 858.636 858.628 791.383 405.114 835.503
10 864.433 864.483 864.473 797.847 417.537 841.553

Law II 1 507.040 515.256 504.988 509.517 279.264 505.120
2 849.352 849.353 849.353 763.720 349.605 818.687
3 849.448 849.452 849.451 774.687 368.137 823.471
4 849.729 849.735 849.733 778.289 375.667 825.063
5 850.339 850.348 850.345 780.399 380.291 826.250
6 851.463 851.477 851.472 782.388 384.555 827.701
7 853.329 853.346 853.341 784.870 389.701 829.792
8 856.197 856.220 856.213 788.277 396.584 832.852
9 860.367 860.395 860.386 793.000 405.916 837.212
10 866.165 866.199 866.188 799.426 418.327 843.222

Law III 1 507.880 516.109 505.824 510.361 279.730 505.956
2 850.780 850.782 850.781 765.004 350.192 820.064
3 850.896 850.899 850.898 776.006 368.763 824.874
4 851.204 851.210 851.208 779.639 376.318 826.495
5 851.849 851.858 851.855 781.785 380.965 827.717
6 853.018 853.030 853.026 783.815 385.255 829.211
7 854.935 854.953 854.947 786.347 390.431 831.354
8 857.865 857.887 857.880 789.812 397.350 834.474
9 862.105 862.133 862.124 794.601 406.725 838.903
10 867.982 868.017 868.006 801.101 419.185 844.991
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Table 10: Variation of NFs (Hz) for Type II & Case 2 FGM CS against n with ring support. (L/R = 50,m = 1, H/R = 0.007, a = 0.5, N = 1) .

n SS − SS C − C F − F C − SS C − F F − SS
1 500.409 508.573 498.414 502.883 276.586 498.525
2 841.206 841.208 841.207 756.396 346.253 810.824
3 841.310 841.313 841.312 767.265 364.611 815.580
4 841.600 841.606 841.604 770.843 372.076 817.169
5 842.221 842.230 842.227 772.949 376.667 818.362
6 843.356 843.369 843.365 774.940 380.907 819.820
7 845.231 845.248 845.243 777.424 386.029 821.918
8 848.107 848.129 848.122 780.833 392.880 824.983
9 852.279 852.307 852.298 785.553 402.168 829.344
10 858.073 858.108 858.096 791.967 414.518 835.348

Table 11: Variation of NFs (Hz) for Type II & Case 3 FGM CS against n with ring support.(L/R = 50,m = 1, H/R = 0.007, a = 0.5, N = 1).

n SS − SS C − C F − F C − SS C − F F − SS
1 497.177 505.321 495.213 499.652 275.387 495.311
2 837.550 837.551 837.551 753.109 344.748 807.294
3 837.650 837.653 837.652 763.926 363.024 812.031
4 837.933 837.938 837.936 767.484 370.452 813.608
5 838.542 838.551 838.548 769.572 375.016 814.787
6 839.661 839.674 839.670 771.543 379.227 816.227
7 841.513 841.530 841.524 774.002 384.310 818.302
8 844.356 844.378 844.371 777.376 391.108 821.334
9 848.485 848.513 848.504 782.050 400.323 825.651
10 854.223 854.257 854.246 788.406 412.578 831.597

Table 12: Variation of NFs (Hz) of three layered FGM CS Type I &
Case1 versus circumferential wave number (n).
(L/R = 50,m = 1, H/R = 0.007, a = 0.5, N = 1).

without ring
support

with ring support

n Type I Type I
1 1.6289 505.393
2 4.6222 848.181
3 12.991 848.297
4 24.903 848.604
5 40.271 849.247
6 59.076 850.411
7 81.309 852.321
8 106.968 855.239
9 136.052 859.460
10 168.559 865.311

ures 7 and 8 exhibits variation of NFs (Hz) versus n for dif-
ferentN with a = 0.5 for SS−SS and C−C end point condi-
tions. Here N differs as 0.5, 1 and 2. Here frequency curves
increase rapidly from n = 1 to 2 and then these curves start

Figure 4: Variation of NFs (Hz) of three-layered FGM CS with ring
supports position ‘a’ at different L /R ratios for Law-I, C − C edge
conditions. (m = 1, n = 1, H/R = 0.005 and N = 2)

to increase linearly through n. It is noticed that with the in-
crease in power law exponent N natural frequency is not
really affected.
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Table 13: Natural Frequencies (Hz) of Type I & Case 1 FGM CS with ring support versus length to radius ratios L/R. (n = 1,m = 1, , H/R =
0.005, a = 0.5).

L/R N=1 N=2 N=3 N=4 N=5 N=10 N=20 N=30 N=50
5 595.701 593.988 593.135 592.625 592.285 591.513 591.067 590.905 590.763
10 528.705 527.184 526.427 525.973 525.672 524.985 524.587 524.440 524.309
20 510.584 509.115 508.384 507.946 507.655 506.991 506.607 506.464 506.337

Figure 5: Variation of NFs (Hz) of three-layered FGM CS versus ring
supports position ‘a’ at different L /R ratios for C−SS edge conditions.
(m = 1, n = 1, H/R = 0.005 and N = 2)

Figure 6: Variation of NFs (Hz) of three-layered FGM CS versus ring
supports position ‘a’ at different L /R ratios for C − F edge conditions.
(m = 1, n = 1, H/R = 0.005 and N = 2)

Figure 7: Variation of NFs (Hz) of FGM cylindrical shell versus (n) for
different N with SS − SS edge conditions. (m=1, L/R=50, H/R=0.007)

Figure 8: Variation of NFs (Hz) of FGM cylindrical shell versus (n) for
different N with C − C edge conditions. (m=1, L/R=50, H/R=0.007)
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7 Conclusions
The frequency analysis of three-layered FGM cylindrical
shell is performed to determine the effect of ring support.
The shell central layer is made of FGMs while the internal
and external layers are of isotropic material. Variation of
NFs (Hz) is analyzed for six boundary conditions. It is con-
cluded that the material dissemination controlled by the
VFL which has little effect (<1%) on vibration frequency of
a FGM CS but law-III is recommended for type 1 FGM shell
and law-I is for type 2 FGM shell to estimate the lower fre-
quency values.

Natural frequencies are increased with the increase of
n and decreased with the increase of L/R ratios. Natural
frequency also decreased <2% when increase in the thick-
ness of the central layer becomes double. The frequency
curve of the shell with ring support at different positions
get symmetric shapes because of same edge conditions.
They are not symmetrical about center because of differ-
ent end point conditions. The induction of ring support on
cylinder-shaped shell has significant effect on the NFs as
compared to the shell frequencies without ring support.
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Appendix

K11 = α2β2x11I1 + n2β2(x66 − βy66 + β2z66/4)I2
K12 = −nαβ2(x12 + βy12)I3

+ nαβ2(x66 + βy66 − 3β2z66/4)I4
K13 = αβ(x12 + n2βy12)I5

+ n2αβ2(−2y66 + βz66)I6 − α3β2y11I7
K22 = n2β2(x22 + 2βy22 + β2z22)I8

+ α2β2(x66 + 3βy66 + 9β2z66/4)I9
K21 = K12
K23 = −nβ(x22 + (n2 + 1)βy22 + n2β2z22)I10

− nα2β2(2y66 + 3βz66)I11 + nα2β2(y12 + βz12)I12
K31 = K13
K32 = K23
K33 = (x22 + 2n2βy22 + n4β2z22)I13 + 4n2α2β2z66I14

− α2β(y12 + n2βz12)I15 + α4β2z11I16

where
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13E

162(1 − µ2)+
E1 − E2
(1 − µ21)

×
[︂

1
108 (N + 1)

− 1
27 (N + 1) (N + 2)

− 2
27 (N + 1) (N + 2) (N + 3)

]︂
+ E2
324(1 − µ21)

z12 =
13µE

162(1 − µ2)+
µ1(E1 − E2)
(1 − µ21)

×
[︂

1
108 (N + 1)

− 1
27 (N + 1) (N + 2)

− 2
27 (N + 1) (N + 2) (N + 3)

]︂
+ µ1E2
324(1 − µ21)
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z66 =
13E

324(1 + µ)+
E1 − E2
2(1 + µ1)

×
[︂

1
108 (N + 1)

− 1
27 (N + 1) (N + 2)

− 2
27 (N + 1) (N + 2) (N + 3)

]︂
+ E2
648(1 + µ1)

M11 = β2I2, M22 = β2I8,M33 = I13
M12 = M13 = M21 = M23 = M31 = M32 = 0
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