Accessible Requires Authentication Published by De Gruyter February 19, 2014

Porphysome nanoparticles: Tailoring treatments with nature’s pigments

Porphysom-Nanopartikel: Individualisierte Behandlung mit natürlichen Pigmenten
Thomas D. MacDonald and Gang Zheng

Abstract

Porphysomes are an emerging class of photonic nanoparticles formed from the self-assembly of porphyrin-lipid conjugates. They retain the multifunctional properties of their porphyrin building-blocks but also have unique properties emerging from the nanostructure itself. Porphysomes are able to act in a number of photonic modalities, from diagnostic fluorescence and photoacoustic imaging, to photodynamic and photothermal therapies. This flexibility enables customizable interventions with potential in the burgeoning field of personalized medicine. Here, we profile early porphysome-like liposomes, true porphysomes, as well as newer porphysome derivatives. We discuss the current applications and future outlook for these multimodal theranostic nanoparticles.

Zusammenfassung

Porphysome sind eine neue Klasse von photonischen Nanopartikeln, die durch die Selbstanordnung von Porphyrin-Lipid-Konjugaten gebildet werden. Sie besitzen nicht nur die multifunktionalen Eigenschaften ihrer Porphyrin-Bausteine, sondern haben auch einzigartige Eigenschaften, die sich aus der Nanostruktur selbst ergeben. Porphysome können in einer Reihe von verschiedenen photonischen Modalitäten eingesetzt werden, von der Fluoreszenzdiagnostik und photoakustischen Bildgebung bis hin zu photodynamischen und photothermischen Therapien. Diese Flexibilität birgt ein großes Potenzial für anpassbare Interventionen im aufstrebenden Bereich der personalisierten Medizin. Im vorliegenden Artikel porträtieren die Autoren frühe porphysom-ähnliche Liposome, echte Porphysome sowie neuere Porphysom-Derivate und diskutieren die aktuellen Anwendungen sowie die Zukunftsaussichten für diese multimodalen Theranostik-Nanopartikel.


Corresponding author: Gang Zheng, Ontario Cancer Institute, Campbell Family Institute for Cancer Research, and Techna Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada; Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada; and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada, e-mail:

Acknowledgments

Funding was provided by Canadian Institute of Health Research, Ontario Institute for Cancer Research, Canadian Space Agency, Natural Sciences and Engineering Research Council of Canada, Canadian Foundation for Innovation, Princess Margaret Hospital Foundation, Joey and Toby Tanenbaum/Brazilian Ball Chair in Prostate Cancer Research, and MaRS Innovation.

References

[1] Sarikaya M, Tamerler C, Jen AK, Schulten K, Baneyx F. Molecular biomimetics: nanotechnology through biology. Nat Mater 2003;2(9):577–85. Search in Google Scholar

[2] Voet D, Voet JG. Biochemistry. 3rd edition. New York: J. Wiley & Sons; 2004. Search in Google Scholar

[3] Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2(12):751–60. Search in Google Scholar

[4] Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J 2005;19(3):311–30. Search in Google Scholar

[5] Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004;303(5665):1818–22. Search in Google Scholar

[6] Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2008;83(5):761–9. Search in Google Scholar

[7] Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol 2006;24(10):1211–7. Search in Google Scholar

[8] Zheng G, Chen J, Li H, Glickson JD. Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents. Proc Natl Acad Sci USA 2005;102(49):17757–62. Search in Google Scholar

[9] Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001;47(1):65–81. Search in Google Scholar

[10] Cormode DP, Skajaa T, van Schooneveld MM, Koole R, Jarzyna P, Lobatto ME, Calcagno C, Barazza A, Gordon RE, Zanzonico P, Fisher EA, Fayad ZA, Mulder WJ. Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano Lett 2008;8(11):3715–23. Search in Google Scholar

[11] Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004;104(1):293–346. Search in Google Scholar

[12] Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 2009;38(6):1759–82. Search in Google Scholar

[13] Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008;60(11):1252–65. Search in Google Scholar

[14] Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett 2008;176(1):1–12. Search in Google Scholar

[15] Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996;271(5251):933–7. Search in Google Scholar

[16] Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998;281(5385):2016–8. Search in Google Scholar

[17] Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307(5709):538–44. Search in Google Scholar

[18] Louie A. Multimodality imaging probes: design and challenges. Chem Rev 2010;110(5):3146–95. Search in Google Scholar

[19] Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005;26(18):3995–4021. Search in Google Scholar

[20] Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001;53(2):283–318. Search in Google Scholar

[21] Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 2006;58(14):1456–9. Search in Google Scholar

[22] Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature 2008;452(7187):580–9. Search in Google Scholar

[23] Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ; ALA-Glioma Study Group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 2006;7(5):392–401. Search in Google Scholar

[24] Cheong WF, Prahl SA, Welch AJ. A review of the optical properties of biological tissues. IEEE J Quantum Electron 1990;26(12):2166–85. Search in Google Scholar

[25] Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. J Natl Cancer Inst 1998;90(12):889–905. Search in Google Scholar

[26] Gomer CJ. Preclinical examination of first and second generation photosensitizers used in photodynamic therapy. Photochem Photobiol 1991;54(6):1093–107. Search in Google Scholar

[27] Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006;128(6):2115–20. Search in Google Scholar

[28] O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photothermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 2004;209(2):171–6. Search in Google Scholar

[29] Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, Chan WC, Cao W, Wang LV, Zheng G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 2011;10(4):324–32. Search in Google Scholar

[30] Jin CS, Lovell JF, Chen J, Zheng G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 2013;7(3):2541–50. Search in Google Scholar

[31] Cepek J, Chronik BA, Lindner U, Trachtenberg J, Davidson SR, Bax J, Fenster A. A system for MRI-guided transperineal delivery of needles to the prostate for focal therapy. Med Phys 2013;40(1):012304. Search in Google Scholar

[32] Lindner U, Trachtenberg J, Lawrentschuk N. Focal therapy in prostate cancer: modalities, findings and future considerations. Nat Rev Urol 2010;7(10):562–71. Search in Google Scholar

[33] Wang LV. Multiscale photoacoustic microscopy and computed tomography. Nat Photonics 2009;3(9):503–509. Search in Google Scholar

[34] Gust D, Moore TA, Moore AL. Mimicking photosynthetic solar energy transduction. Acc Chem Res 2001;34(1):40–8. Search in Google Scholar

[35] Pass HI. Photodynamic therapy in oncology: mechanisms and clinical use. J Natl Cancer Inst 1993;85(6):443–56. Search in Google Scholar

[36] Jørgensen KA. Transition-metal-catalyzed epoxidations. Chem Rev 1989;89(3):431–58. Search in Google Scholar

[37] Lash TD, Chaney ST, Richter DT. Conjugated macrocycles related to the porphyrins. 12. Oxybenzi- and oxypyriporphyrins: Aromaticity and conjugation in highly modified porphyrinoid structures. J Org Chem 1998;63(24):9076–88. Search in Google Scholar

[38] Aihara J, Nakagami Y, Sekine R, Makino M. Validity and limitations of the bridged annulene model for porphyrins. J Phys Chem A 2012;116(47):11718–30. Search in Google Scholar

[39] Juselius J, Sundholm D. The aromatic pathways of porphins, chlorins and bacteriochlorins. Phys Chem Chem Phys 2000;2(10):2145–52. Search in Google Scholar

[40] Fliegl H, Sundholm D. Aromatic pathways of porphins, chlorins, and bacteriochlorins. J Org Chem 2012;77(7): 3408–14. Search in Google Scholar

[41] Wu JI, Fernández I, Schleyer Pv. Description of aromaticity in porphyrinoids. J Am Chem Soc 2013;135(1):315–21. Search in Google Scholar

[42] Bröring M. How should aromaticity be described in porphyrinoids? Angew Chem Int Ed Engl 2011;50(11):2436–8. Search in Google Scholar

[43] Gouterman M. Spectra of porphyrins. J Mol Spectrosc 1961;6(1):138–63. Search in Google Scholar

[44] Caughey WS, Corwin AH. The stability of metalloetioporphyrins toward acids. J Am Chem Soc 1955;77(6):1509–13. Search in Google Scholar

[45] Eisner U, Harding MJC. Metalloporphyrins. Part I. Some novel demetallation reactions. J Chem Soc 1964;1964:4089–101. Search in Google Scholar

[46] Conant JB, Kamerling SE. Studies in the chlorophyll series. VII. Evidence as to structure from measurements of absorption spectra. J Am Chem Soc 1931;53(9):3522–9. Search in Google Scholar

[47] Baker EW, Storm CB, McGrew GT, Corwin AH. Substituent effects in porphyrins and metalloporphyrins. Bioinorg Chem 1973;3(1):49–60. Search in Google Scholar

[48] Hosomizu K, Oodoi M, Umeyama T, Matano Y, Yoshida K, Isoda S, Isosomppi M, Tkachenko NV, Lemmetyinen H, Imahori H. Substituent effects of porphyrins on structures and photophysical properties of amphiphilic porphyrin aggregates. J Phys Chem B 2008;112(51):16517–24. Search in Google Scholar

[49] Milgrom LR. The colours of life: An introduction to the chemistry of porphyrins and related compounds. Oxford, New York: Oxford University Press; 1997. Search in Google Scholar

[50] Lindsey JS. Synthetic routes to meso-patterned porphyrins. Acc Chem Res 2010;43(2):300–11. Search in Google Scholar

[51] Fox S, Boyle RW. Synthetic routes to porphyrins bearing fused rings. Tetrahedron 2006;62(43):10039–54. Search in Google Scholar

[52] Arsenault GP, Bullock E, MacDonald SF. Pyrromethanes and porphyrins therefrom. J Am Chem Soc 1960;82(16):4384–9. Search in Google Scholar

[53] Franck B, Nonn A. Novel porphyrinoids for chemistry and medicine by biomimetic syntheses. Angew Chem Int Ed Engl 1995;34:1795–811. Search in Google Scholar

[54] O’Connor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol 2009;85(5):1053–74. Search in Google Scholar

[55] Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer 2003;3(5):380–7. Search in Google Scholar

[56] Berg K, Selbo PK, Weyergang A, Dietze A, Prasmickaite L, Bonsted A, Engesaeter BØ, Angell-Petersen E, Warloe T, Frandsen N, Høgset A. Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J Microsc 2005;218(Pt 2):133–47. Search in Google Scholar

[57] Chen B, Pogue BW, Hasan T. Liposomal delivery of photosensitising agents. Expert Opin Drug Deliv 2005;2(3):477–87. Search in Google Scholar

[58] Komatsu T, Moritake M, Nakagawa A, Tsuchida E. Self-organized lipid-porphyrin bilayer membranes in vesicular form: nanostructure, photophysical properties, and dioxygen coordination. Chemistry 2002;8(23):5469–80. Search in Google Scholar

[59] Matsushita Y, Hasegawa E, Eshima K, Tsuchida E. Synthesis of amphiphilic porphinatoiron complexes having phosphocholine groups. Chem Lett 1983;12:1387–9. Search in Google Scholar

[60] Tsuchida E. Liposome-embedded iron-porphyrins as an artificial oxygen-carrier. Ann NY Acad Sci 1985;446:429–42. Search in Google Scholar

[61] Tsuchida E, Sou K, Nakagawa A, Sakai H, Komatsu T, Kobayashi K. Artificial oxygen carriers, hemoglobin vesicles and albumin-hemes, based on bioconjugate chemistry. Bioconjug Chem 2009;20(8):1419–40. Search in Google Scholar

[62] Komatsu T, Moritake M, Tsuchida E. Molecular energy and electron transfer assemblies made of self-organized lipid-porphyrin bilayer vesicles. Chemistry 2003;9(19):4626–33. Search in Google Scholar

[63] Lovell JF, Jin CS, Huynh E, MacDonald TD, Cao W, Zheng G. Enzymatic regioselection for the synthesis and biodegradation of porphysome nanovesicles. Angew Chem Int Ed Engl 2012;51(10):2429–33. Search in Google Scholar

[64] Shieh MJ, Hsu CY, Huang LY, Chen HY, Huang FH, Lai PS. Reversal of doxorubicin-resistance by multifunctional nanoparticles in MCF-7/ADR cells. J Control Release 2011;152(3):418–25. Search in Google Scholar

[65] Hsu CY, Nieh MP, Lai PS. Facile self-assembly of porphyrin-embedded polymeric vesicles for theranostic applications. Chem Commun (Camb) 2012;48(75):9343–5. Search in Google Scholar

[66] Liu TW, Macdonald TD, Jin CS, Gold JM, Bristow RG, Wilson BC, Zheng G. Inherently multimodal nanoparticle-driven tracking and real-time delineation of orthotopic prostate tumors and micrometastases. ACS Nano 2013;7(5):4221–32. Search in Google Scholar

[67] Harriman A. Luminescence of porphyrins and metalloporphyrins. Part 3. – Heavy-atom effects. J Chem Soc, Faraday Trans 2 1981;77:1281–91. Search in Google Scholar

[68] Harriman A. Luminescence of porphyrins and metalloporphyrins. Part 1. – Zinc(II), nickel(II) and manganese(II) porphyrins. J Chem Soc, Faraday Trans 1 1980;76: 1978–85. Search in Google Scholar

[69] Chen CY, Sun E, Fan D, Taniguchi M, McDowell BE, Yang E, Diers JR, Bocian DF, Holten D, Lindsey JS. Synthesis and physicochemical properties of metallobacteriochlorins. Inorg Chem 2012;51(17):9443–64. Search in Google Scholar

[70] Straub KD, Rentzepis PM, Huppert D. Picosecond spectroscopy of some metalloporphyrins. J Photochem 1981;17(2):419–25. Search in Google Scholar

[71] Tam NC, McVeigh PZ, MacDonald TD, Farhadi A, Wilson BC, Zheng G. Porphyrin-lipid stabilized gold nanoparticles for surface enhanced Raman scattering based imaging. Bioconjug Chem 2012;23(9):1726–30. Search in Google Scholar

[72] Chen CW, Cohen JS, Myers CE, Sohn M. Paramagnetic metalloporphyrins as potential contrast agents in NMR imaging. FEBS Lett 1984;168(1):70–4. Search in Google Scholar

[73] Lee T, Zhang XA, Dhar S, Faas H, Lippard SJ, Jasanoff A. In vivo imaging with a cell-permeable porphyrin-based MRI contrast agent. Chem Biol 2010;17(6):665–73. Search in Google Scholar

[74] Kueny-Stotz M, Garofalo A, Felder-Flesch D. Manganese-enhanced MRI contrast agents: from small chelates to nanosized hybrids. Eur J Inorg Chem 2012;12:1987–2005. Search in Google Scholar

[75] Pan D, Caruthers SD, Senpan A, Schmieder AH, Wickline SA, Lanza GM. Revisiting an old friend: manganese-based MRI contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010;3(2):162–73. Search in Google Scholar

[76] Pan D, Caruthers SD, Senpan A, Yalaz C, Stacy AJ, Hu G, Marsh JN, Gaffney PJ, Wickline SA, Lanza GM. Synthesis of NanoQ, a copper-based contrast agent for high-resolution magnetic resonance imaging characterization of human thrombus. J Am Chem Soc 2011;133(24):9168–71. Search in Google Scholar

[77] Tu C, Louie AY. Nanoformulations for molecular MRI. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012;4(4): 448–57. Search in Google Scholar

[78] Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 2004;14(14):2161–75. Search in Google Scholar

[79] Caravan P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 2006;35(6):512–23. Search in Google Scholar

[80] Qaim SM, Bisinger T, Hilgers K, Nayak D, Coenen HH. Positron emission intensities in the decay of Cu-64, Br-76 and I-124. Radiochim Acta 2007;95(2):67–73. Search in Google Scholar

[81] Alburger DE, Richards P, Ku TH. Beta-ray branching in the decay of Tc-99m. Int J Appl Radiat Is 1980;31(7):437. Search in Google Scholar

[82] Vallabhajosula S. Molecular imaging: Radiopharmaceuticals for PET and SPECT. Dordrecht, Heidelberg, London, New York: Springer-Verlag; 2009. Search in Google Scholar

[83] Liu TW, MacDonald TD, Shi J, Wilson BC, Zheng G. Intrinsically copper-64-labeled organic nanoparticles as radiotracers. Angew Chem Int Ed Engl 2012;51(52):13128–31. Search in Google Scholar

[84] Ng KK, Lovell JF, Vedadi A, Hajian T, Zheng G. Self-assembled porphyrin nanodiscs with structure-dependent activation for phototherapy and photodiagnostic applications. ACS Nano 2013;7(4):3484–90. Search in Google Scholar

[85] Huynh E, Lovell JF, Helfield BL, Jeon M, Kim C, Goertz DE, Wilson BC, Zheng G. Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. J Am Chem Soc 2012;134(40):16464–7. Search in Google Scholar

Received: 2013-12-11
Revised: 2014-1-21
Accepted: 2014-1-29
Published Online: 2014-2-19
Published in Print: 2014-8-1

©2014 Walter de Gruyter GmbH, Berlin/Boston