Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 12, 2021

Bulk Nanocrystalline Permanent Magnets by Selective Laser Melting

Bulk-Nanokristalline Dauermagnete durch selektives Laserschmelzen
  • F. Trauter

    Felix Trauter in 2017 he finished his Bachelor of Engineering in Surface Technologies / Innovative Materials at Aalen University. Followed by a master’s degree in Advanced Materials and Manufacturing in 2019. Topic of his master thesis was casting and additive manufacturing of novel soft magnetic materials. Since then he is working at the Materials Research Institute Aalen as a PhD student, researching the additive manufacturing of permanent magnetic materials.

    , J. Schanz

    Jochen Schanz he completed his bachelor's degree in Manufacturing Engineering in 2014. After he completed his master´s degree in Advanced Materials and Manufacturing with a research focus on laser welding of aluminum at the Laser Application Centre. Afterwards, he worked in industry in the field of process development of welding methods for automotive manufacturing. Since October 2017 he is a PhD student in the field of adhesive bonding technology. Furthermore, he works on process development of powder bed based additive manufacturing.

    , H. Riegel , T. Bernthaler , D. Goll and G. Schneider
From the journal Practical Metallography

Abstract

Fe-Nd-B powders were processed by additive manufacturing using laboratory scale selective laser melting to produce bulk nanocrystalline permanent magnets. The manufacturing process was carried out in a specially developed process chamber under Ar atmosphere. This resulted in novel types of microstructures with micrometer scale clusters of nanocrystalline hard magnetic grains. Owing to this microstructure, a maximum coercive field strength (coercivity) μ0Hc of 1.16 T, a remanence Jr of 0.58 T, and a maximum energy product (BH)max of 62.3 kJ/mm3could, for example, be obtained for the composition Nd16.5-Pr1.5-Zr2.6-Ti2.5-Co2.2-Fe65.9-B8.8.

Kurzfassung

Durch additive Fertigung mittels Selective Laser Melting (Selektives Laserschmelzen) im Labormaßstab wurden Fe-Nd-B Pulver zu bulk-nanokristallinen Dauermagneten verarbeitet. Der Fertigungsprozess wurde in einer speziell entwickelten Prozesskammer unter Ar-Atmosphäre durchgeführt. Dabei entstanden neuartige Gefügeausprägungen mit μm großen Clustern aus nanokristallinen Hartmagnetkörnern. Durch diese Gefüge konnten z. B. für die Zusammensetzung Nd16,5-Pr1,5-Zr2,6-Ti2,5-Co2,2-Fe65,9-B8,8 eine maximale Koerzitivfeldstärke von μ0Hc = 1,16 T, eine Remanenz von Jr = 0,58 T und ein maximales Energieprodukt von (BH)max = 62,3 kJ/mm3erzielt werden.

About the authors

F. Trauter

Felix Trauter in 2017 he finished his Bachelor of Engineering in Surface Technologies / Innovative Materials at Aalen University. Followed by a master’s degree in Advanced Materials and Manufacturing in 2019. Topic of his master thesis was casting and additive manufacturing of novel soft magnetic materials. Since then he is working at the Materials Research Institute Aalen as a PhD student, researching the additive manufacturing of permanent magnetic materials.

J. Schanz

Jochen Schanz he completed his bachelor's degree in Manufacturing Engineering in 2014. After he completed his master´s degree in Advanced Materials and Manufacturing with a research focus on laser welding of aluminum at the Laser Application Centre. Afterwards, he worked in industry in the field of process development of welding methods for automotive manufacturing. Since October 2017 he is a PhD student in the field of adhesive bonding technology. Furthermore, he works on process development of powder bed based additive manufacturing.

4

4 Acknowledgement

This work was financed by the Ministry of Science, Research and Arts (MWK) of the Land Baden-Württemberg and the Federal Ministry of Education and Research (BMBF).

4

4 Danksagung

Die Arbeit wurde finanziert vom Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg (MWK) und dem Bundesministerium für Bildung und Forschung (BMBF).

References / Literatur

[1] Goll, D.: Z. Met. 93 (2002) 10, 1009–1018. DOI: 10.3139/146.02100910.3139/146.021009Search in Google Scholar

[2] Schneider, G.; Henig, E. T.; Petzow, G.; Stadelmaier, H. H.: Z. Met. 77 (1986), 775.Search in Google Scholar

[3] Jaćimović, J.; Binda, F.; Herrmann, L. G.; Greuter, F.; Genta, J.; Calvo, M.; Tomše, T.; Simon, R. A.: Adv. Eng. Mater. 19 (2017) 8, 1700098. DOI: 10.1002/adem.20170009810.1002/adem.201700098Search in Google Scholar

[4] Bittner, F.; Thielsch, J.; Drossel, W.-G.: Scr. Mater. 201 (2021), 113921. DOI: 10.1016/j.scriptamat.2021.11392110.1016/j.scriptamat.2021.113921Search in Google Scholar

[5] Goll, D.; Trauter, F.; Bernthaler, T.; Schanz, J.; Riegel, H.; Schneider, G.: Micromachines 12 (2021) 5, 538. DOI: 10.3390/mi1205053810.3390/mi12050538Search in Google Scholar

[6] Matsuura, Y.; Hirosawa, S.; Yamamoto, H.; Fujimura, S.; Sagawa, M.; Osamura, K.: Jpn. J. Appl. Phys. 24 (1985) 8A // Part 2, No. 8, L635. DOI: 10.1143/JJAP.24.L63510.1143/JJAP.24.L635Search in Google Scholar

[7] Henig, E. T.; Schneider, G.; Stadelmaier, H. H.: Z. Met. 78 (1987) 11, 818–820. DOI: 10.1515/ijmr-1987-78111110.1515/ijmr-1987-781111Search in Google Scholar

[8] Chang, B.; Du, D.; Yi, C.; Xing, B.; Li, Y.: Metals 6 (2016) 9, 202. DOI: 10.3390/met609020210.3390/met6090202Search in Google Scholar

[9] Goll, D.; Seeger, M.; Kronmüller, H.: J. Magn. Magn. Mater. 185 (1998) 1, 49–60. DOI: 10.1016/S0304-8853(98)00030-410.1016/S0304-8853(98)00030-4Search in Google Scholar

Received: 2021-07-12
Accepted: 2021-08-04
Published Online: 2021-10-12
Published in Print: 2021-10-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 4.6.2023 from https://www.degruyter.com/document/doi/10.1515/pm-2021-0055/html
Scroll to top button