Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 30, 2022

Comparison of LPBF-manufactured and rolled tensile test samples made of 17-4PH

Vergleich von mittels LPBF gefertigten und gewalzten Zugproben aus 17- 4PH
  • Robin Roj

    Robin Roj studied Mechanical Engineering at the University of Wuppertal and finished his Master of Science in 2011. He graduated with his PhD about CAD-software in 2016. After two years in industry, he continued his scientific career at the FGW. There he is managing the department for Transformation & Innovation.

    , Aileen Blondrath

    Aileen Blondrath finished her Bachelor of Science in Mechanical Engineering at the University of Wuppertal in 2019 and her Master of Science in 2021. Now she is focusing on her PhD at the RWTH Aachen. Besides her studies she was working for the FGW.

    , Francesco Serleti , Christopher Holm , Ralf Theiß and Peter Dültgen
From the journal Practical Metallography

Abstract

In recent years additive manufacturing techniques for metals became more and more enhanced and a great variety of processable materials are available. Nevertheless, the quality of 3D-printed components is often not obvious, and, depending on the material, it is not known whether they are as resilient as conventionally manufactured parts. In this paper rolled tensile test samples made of 17-4PH are compared with additively manufactured ones. For this purpose, they were printed by Laser Powder Bed Fusion in three different orientations, 0°, 45°, and 90°, and subsequently tensile tested. The presented results contain mesoscopic images of the fracture surfaces, as well as an analysis of the metallographic microstructure. Further details about the measured hardness, the phase diagrams as well as an optimized heat treatment are described in detail. It is shown that specifically the heat treated specimens with a 45° orientation reaches the highest ultimate tensile stress, but possess a low ductility in comparison to the conventional components.

Kurzfassung

In den vergangenen Jahren wurden additive Fertigungsverfahren für Metalle stetig verbessert und eine Vielzahl verarbeitbarer Werkstoffe steht zur Verfügung. Häufig ist die Qualität der 3D-gedruckten Bauteile jedoch keine Selbstverständlichkeit. Für einige Werkstoffe ist zudem nicht bekannt, ob die so hergestellten Teile so belastbar wie konventionell gefertigte sind. In diesem Beitrag werden gewalzte Zugproben aus 17-4PH mit additiv gefertigten Proben verglichen. Zu diesem Zweck wurden Letztere mittels Selektivem Laserschmelzen (Laser Powder Bed Fusion, LPBF) in den drei unterschiedlichen Orientierungen 0°, 45° und 90° gedruckt. Anschließend wurden Zugversuche durchgeführt. Die vorgestellten Ergebnisse umfassen mesoskopische Abbildungen der Bruchflächen sowie eine Analyse des Metallgefüges. Weitere Details zur gemessenen Härte, die Phasendiagramme sowie eine optimierte Wärmebehandlung werden eingehend beschrieben. Es wird gezeigt, dass insbesondere die mit einer Orientierung von 45° gefertigten wärmebehandelten Proben zwar die höchste Zugfestigkeit erreichen, verglichen mit den konventionell gefertigten Bauteilen allerdings auch eine geringe Duktilität aufweisen.

About the authors

Robin Roj

Robin Roj studied Mechanical Engineering at the University of Wuppertal and finished his Master of Science in 2011. He graduated with his PhD about CAD-software in 2016. After two years in industry, he continued his scientific career at the FGW. There he is managing the department for Transformation & Innovation.

Aileen Blondrath

Aileen Blondrath finished her Bachelor of Science in Mechanical Engineering at the University of Wuppertal in 2019 and her Master of Science in 2021. Now she is focusing on her PhD at the RWTH Aachen. Besides her studies she was working for the FGW.

References / Literatur

[1] Deutsche Edelstahlwerke – Werkstoffdatenblatt X5CrNiCuNb164 1.4542, URL: https://www.dew-stahl.com/fileadmin/files/dew-stahl.com/documents/Publikationen/Werkstoffdatenblaetter/RSH/1.4542_de.pdf accessed: 22.12.2020Search in Google Scholar

[2] Bryson, W. E.: Heat Treatment – Master Control Manual, Carl Hanser Verlag, München, Germany, 201510.3139/9781569904862Search in Google Scholar

[3] Mahesha, N. S.; Hanumantharaya, R.; Mahesh, B. D.; Ramakrishna Devananda, P.; Shivakumar, K. M.: Tribological Wear Behavior of AISI 630 (17-4 PH) Stainless Steel Hardened by Precipitation Hardening, American Journal of Materials Science 6 (2016) No. 4A, 6-14. DOI: 10.5923/c.materials.201601.0210.5923/c.materials.201601.02Search in Google Scholar

[4] Oerlikon – Material Product Data Sheet: MetcoAdd 17-4PH-A, URL: https://www.oerlikon.com/ecoma/files/DSMA-0004.0_HighStrengthSS_AM-2.pdf accessed: 22.12.2020Search in Google Scholar

[5] OR-Laser – 3D Metal Printing of Tomorrow, URL: https://creator.or-laser.com/wp-content / uploads/2016/09/CREATOR_EN_web.pdf, accessed: 23.12.2020Search in Google Scholar

[6] Blondrath, A.: Erstellung und Untersuchung 3D-gedruckter Komponenten im SLM-Verfahren mit anschließendem Vergleich zu konventionell hergestellten Proben, University of Wuppertal – Lehrstuhl für Neue Fertigungstechnologien und Werkstoffe, Wuppertal, Germany, 2019Search in Google Scholar

[7] Serleti, F.: Optimierung der Wärmebehandlung der mittels selektiven Laserschmelzens (SLM) hergestellten Legierung 17-4PH, University of Wuppertal – Lehrstuhl für Neue Fertigungstechnologien und Werkstoffe, Wuppertal, Germany, 2019Search in Google Scholar

[8] Ghosh, R.; Venugopal, A.; Arun Chand, C. V.; Ramesh Narayanan, P.; Pant, B.; Cherian, R. M.: Effect of Heat Treatment Anomaly on the Stress Corrosion Cracking Behavior of 17-4 PH Martensitic Stainless Steel, Transactions of the Indian Institute of Metals 72 (2019) No. 6, 1503-1506. DOI: 10.1007/s12666-019-01659-310.1007/s12666-019-01659-3Search in Google Scholar

[9] Yoo, W.-D.; Lee, J.-H.; Youn, K.-T.; Rhyim, Y.-M.: Study on the Microstructure and Mechanical Properties of 17-4 PH Stainless Steel depending on Heat Treatment and Aging Time, Solid State Phenomena 118 (2006), 15-20. DOI: 10.4028/www.scientific.net/SSP.118.1510.4028/3-908451-25-6.15Search in Google Scholar

[10] Zai, L.; Zhang, C.; Wang, Y.; Guo, W.; Wellmann, D.; Tong, X.; Tian, Y.: Laser Powder Bed Fusion of Precipitation-Hardened Martensitic Stainless Steels: A Review, Metals 10 (2020) No. 2, 255-279. DOI: 10.3390/met1002025510.3390/met10020255Search in Google Scholar

[11] Piili, H.; Happonen, A.; Väistö, T.; Venkataramanan, V.; Partanen, J.; Salminen, A.: Cost Estimation of Laser Additive Manufacturing of Stainless Steel, Physics Procedia 78 (2015), 388-396. DOI: 10.1016/j.phpro.2015.11.05310.1016/j.phpro.2015.11.053Search in Google Scholar

[12] Wimler, D.; Kardos, S.; Lindemann, J.; Clemens, H.; Mayer, S.: Aspects of Powder Characterization for Additive Manufacturing, Practical Metallography 55 (2018) No. 9, 620-636. DOI: 10.3139/147.11054710.3139/147.110547Search in Google Scholar

[13] Ahmed, F.; Ali, U.; Sarker, D.; Marzbanrad, E.; Choi, K.; Mahmoodkhani, Y.; Toyserkani, E.: Study of powder recycling and its effect on printed parts during laser powder-bed fusion of 17-4 PH stainless steel, Journal of Materials Processing Technology 278 (2020), 116522. DOI: 10.1016/j.jmatprotec.2019.11652210.1016/j.jmatprotec.2019.116522Search in Google Scholar

[14] Yadollahi, A.; Shamsaei, N.; Thompson, S.; Elwany, A.; Bian, L.: MECHANICAL AND MICRO STRUCTURAL PROPERTIE S OF SELECTIVE LASER MELTED 17-4 PH STAINLESS STEEL, in: Proc. of the ASME 2015 International Mechanical Engineering Congress and Exposition, Houston, Texas, USA (2015), pp. IMECE2015-52362. DOI: 10.1115/IMECE2015-5236210.1115/IMECE2015-52362Search in Google Scholar

[15] Alnajjar, M.; Christien, F.; Barnier, V.; Bosch, C.; Wolski, K.; Fortes, A. D.; Telling, M.: Influence of microstructure and manganese sulfides on corrosion resistance of selective laser melted 17-4 PH stainless steel in acidic chloride medium, Corrosion Science 168 (2020), 108585. DOI: 10.1016/j.corsci.2020.10858510.1016/j.corsci.2020.108585Search in Google Scholar

[16] Burns, D. E.; Kudzal, A.; McWilliams, B.; Manjarres, J.; Hedges, D.; Parker, P. A.: Investigating Additively Manufactured 17-4 PH for Structural Applications, Journal of Materials Engineering and Performance 28 (2019) No. 8, 4943-4951. DOI: 10.1007/s11665-019-04206-910.1007/s11665-019-04206-9Search in Google Scholar

[17] Yadollahi, A.; Shamsaei, N.; Thompson, S. M.; Elwany, A.; Bian, L.; Mahmoudi, M.: FATIGUE BEHAVIOR OF SELECTIVE LASER MELTED 17-4 PH STAINLESS STEEL, in: Proc. of the 2015 Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, Austin, Texas, USA (2015), pp. 721-731Search in Google Scholar

[18] Ponnusamy, P.; Masood, S. H.; Ruan, D.; Palanisamy, S.; Rahman Rashid, R. A.; Mohamed, O. A.: Mechanical performance of selective laser melted 17-4 PH stainless steel under compressive loading, in: Proc. of the 2017 Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, Austin, Texas, USA (2017), pp. 321-331Search in Google Scholar

[19] Rowolt, C.; Milkereit, B.; Gebauer, M.; Seidel, C.; Müller, B.; Kessler, O.: In-Situ Phase Transition Analysis of Conventional and Laser Beam Melted AlSi10Mg and X5CrNiCuNb16-4 Alloys, HTM Journal of Heat Treatment and Materials 73 (2018) No. 6, 317-334. DOI: 10.3139/105.11036610.3139/105.110366Search in Google Scholar

[20] DIN 50125:2016-12: Testing of metallic materials – Tensile test pieces, Beuth, Berlin, Germany (2016). DOI: 10.31030/257739010.31030/2577390Search in Google Scholar

[21] DIN EN ISO 6892-1:2017-02: Metallic materials – Tensile testing – Part 1: Method of test at room temperature, Beuth, Berlin, Germany (2017). DOI: 10.31030/238483110.31030/2384831Search in Google Scholar

[22] DIN 50157-1:2008-04: Metallic materials – Hardness testing with portable measuring instruments operating with mechanical penetration depth – Part 1: Test method, Beuth, Berlin, Germany (2008). DOI: 10.31030/138612510.31030/1386125Search in Google Scholar

[23] Petzow, G.: Metallographisches, Keramographisches, Plastographisches Ätzen, Gebrüder Borntraeger, Berlin, Stuttgart, Germany, 2006. ISBN: 3443230148Search in Google Scholar

Received: 2021-08-04
Accepted: 2021-12-23
Published Online: 2022-03-30

© 2022 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 3.6.2023 from https://www.degruyter.com/document/doi/10.1515/pm-2022-0013/html
Scroll to top button