Abstract
Molten salt containing systems gain in importance for sustainable energy use and production. For research and development, interactions of molten salts with potential container materials are of major interest. This article introduces preparation procedures to display an intact metal and salt microstructure and their interface using light optical microscopy and scanning electron microscopy. The exemplary material combination is the ternary salt mixture NaCl-KCl-MgCl2 and the low alloyed steel 1.4901 (T92) with a maximum service temperature of 550 °C. These are potential elements/materials for use in latent heat thermal energy storages.
Kurzfassung
Systeme, die Salzschmelzen enthalten, gewinnen im Rahmen einer nachhaltigen Energienutzung und Produktion an Bedeutung. Im Forschungs- und Entwicklungsbereich besteht besonderes Interesse an den Wechselwirkungen von Salzschmelzen mit potenziellen Behältermaterialien. Dieser Artikel stellt Präparationsverfahren für die Darstellung eines intakten Metall- und Salzgefüges und ihrer Grenzflächen unter Verwendung von Lichtmikroskopie und Rasterelektronenmikroskopie vor. Die Beispiel-Werkstoffkombination setzt sich aus dem ternären Salzgemisch NaCl-KCl-MgCl2 und dem niedriglegierten Stahl 1.4901 (T92) mit einer maximalen Gebrauchstemperatur von 550 °C zusammen, Elemente, die für einen Einsatz in Latentwärmespeichern in Frage kommen.
About the author
is Head of molten salt research laboratory at BAM since 2020. He was born in 1991 in Berlin. Following his apprenticeship in Metallography in 2010 he studied Material Engineering in Jena. After his Master degree 2015 he joined Siemens R&D and made his PhD in 2019 for the development of brazing processes for gas turbine parts.
References / Literatur
[1] Mehos, M.; Turchi, C.; Vidal, J.; Wagner, M.; Ma, Z.; Ho, C.; Kolb, W.; Andraka, C. &. K. A.: Oncentrating Solar Power Gen3 Demonstration Roadmap. National Renewable Energy Laboratory, 2017. DOI: 10.2172/133889910.2172/1338899Search in Google Scholar
[2] Sarvghad, M., Delkasar, S. &. S. T.: Materials compatibility for the next generation of Concentrated Solar Power plants. Energy Storage Materials 14 (2018), pp. 179–198. DOI: 10.1016/j.ensm.2018.02.02310.1016/j.ensm.2018.02.023Search in Google Scholar
[3] S. E.-S. GmbH: www.saena.de [Online]. Available: https://www.saena.de/download/broschueren/BU_Technologien_der_Abwaermenutzung.pdf. [Zugriff am 08 Dezember 2020].Search in Google Scholar
[4] Guo, S.; Zhang, J.; Wu, W.; Zhou, W.: Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications. Progress in Materials Science 97 (2018), No. 8, pp. 448–487. DOI: 10.1016/j.pmatsci.2018.05.00310.1016/j.pmatsci.2018.05.003Search in Google Scholar
[5] Grégoire, B.; Oskay, C.; Meißner, T. M.; Galetz, M. C.: Corrosion mechanisms of ferritic-martensitic P91 steel and Inconel 600 nickel-based alloy in molten chlorides. Part II: NaCl-KCl-MgCl2 ternary system. Solar Energy Materials and Solar Cells 216 (2020), No. 10, p. 110675. DOI: 10.1016/j.solmat.2020.11067510.1016/j.solmat.2020.110675Search in Google Scholar
[6] Kurley, J. M.; Halstenberg, P. W.; McAlister, A.; Raiman, S.; Dai, S.; Mayes, R. T.: Enabling chloride salts for thermal energy storage: implications of salt purity. RSC Advances 9 (2019), pp. 25602–25608,. DOI: 10.1039/C9RA03133B10.1039/C9RA03133BSearch in Google Scholar
[7] Cho, H.-S.; Zee, J. W. V.; Shimpalee, S.; Tavakoli, B. A.; Weidner, J. W.; Garcia-Diaz, B. L.; Martinez-Rodriguez, M. J.; Olson, L.; Gray, J.: Dimensionless Analysis for Predicting Fe-Ni-Cr Alloy Corrosion in Molten Salt Systems for Concentrated Solar Power Systems. Corrosion 72 (2016), No. 6, pp. 742–760. DOI: 10.5006/186510.5006/1865Search in Google Scholar
[8] Zheng, G.; Sridharan, K.: Corrosion of Structural Alloys in High-Temperature Molten Fluoride Salts for Applications in Molten Salt Reactors. JOM 70 (2018), No. 6, pp. 1535–15418. DOI: 10.1007/s11837-018-2981-210.1007/s11837-018-2981-2Search in Google Scholar
[9] Li, Y.; Xu, X.; Wang, X.; Li, P.; Hao, Q.; Xiao, B.: Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP. Solar Energy 152 (2017), No. 8, p. 57–79. DOI: 10.1016/j.solener.2017.03.01910.1016/j.solener.2017.03.019Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston, Germany