Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 24, 2022

Reproducibility and Scattering in Additive Manufacturing: Results from a Round Robin on PBF-LB/M AlSi10Mg Alloy

Reproduzierbarkeit und Streuung bei der additiven Fertigung: Ergebnisse eines Ringversuchs mit einer PBF-LB/M AlSi10Mg-Legierung
  • M. Schneider

    Markus Schneider studied mechanical engineering and safety engineering at the University of Wuppertal and received his doctorate in the field of short-term vibration resistance. Since 2012 he has been working at GKN Powder Metallurgy in Radevormwald. As Global Director Modeling, Simulation and Fatigue, he deals with all aspects of powder metallurgy, component design, technical reliability and heat treatment. Since 2016, he is head of the expert group "Sintered Steels".

    , D. Bettge , M. Binder , K. Dollmeier , M. Dreyer , K. Hilgenberg , B. Klöden , T. Schlingmann

    Dr.-Ing. Tina Schlingmann is Regional Director EMEA at EOS GmbH responsible for the DACH region. As materials scientist with a doctorate and experienced strategist in the field of additive manufacturing, it is her aim to accelerate the growth of the AM market by merging AM-designed materials with the right applications.

    and J. Schmidt
From the journal Practical Metallography

Abstract

The round robin test investigated the reliability users can expect for AlSi10Mg additive manufactured specimens by laser powder bed fusion through examining powder quality, process parameter, microstructure defects, strength and fatigue. Besides for one outlier, expected static material properties could be found. Optical microstructure inspection was beneficial to determine true porosity and porosity types to explain the occurring scatter in properties. Fractographic analyses reveal that the fatigue crack propagation starts at the rough as-built surface for all specimens. Statistical analysis of the scatter in fatigue using statistical derived safety factors concludes that at a stress of 36.87 MPa the fatigue limit of 107 cycles could be reached for all specimen with a survival probability of 99.999 %.

Kurzfassung

Im Rahmen eines Ringversuchs wurde durch die Untersuchung der Pulverqualität, der Prozessparameter, der Gefügefehler, der Festigkeit und der Ermüdung die Zuverlässigkeit bestimmt, die Nutzer von AlSi10Mg-Proben erwarten können, die mit pulverbettbasiertes Schmelzen mittels Laser (engl. Laser Powder Bed Fusion) gefertigt worden sind. Abgesehen von einem Ausreißer wurden die erwarteten statischen Materialeigenschaften erreicht. Eine optische Gefügeprüfung diente dazu, die tatsächliche Porosität und Arten von Porosität zu ermitteln, um die bei den Eigenschaften auftretende Streuung zu erklären. Fraktographische Unterschungen zeigen eine bei allen Proben von der rauen Oberfläche im As-built-Zustand ausgehende Ermüdungsrissausbreitung. Aus der statistischen Analyse der Streuung bezüglich der Ermüdung unter Anwendung von statistischen abgeleiteten Sicherheitsfaktoren geht hervor, dass alle Proben die Dauerfestigkeit von 107 Zyklen bei einer Spannung von 36,87 MPa mit einer Überlebenswahrscheinlichkeit von 99,999 % erreichten.

About the authors

M. Schneider

Markus Schneider studied mechanical engineering and safety engineering at the University of Wuppertal and received his doctorate in the field of short-term vibration resistance. Since 2012 he has been working at GKN Powder Metallurgy in Radevormwald. As Global Director Modeling, Simulation and Fatigue, he deals with all aspects of powder metallurgy, component design, technical reliability and heat treatment. Since 2016, he is head of the expert group "Sintered Steels".

Dr.-Ing. T. Schlingmann

Dr.-Ing. Tina Schlingmann is Regional Director EMEA at EOS GmbH responsible for the DACH region. As materials scientist with a doctorate and experienced strategist in the field of additive manufacturing, it is her aim to accelerate the growth of the AM market by merging AM-designed materials with the right applications.

Acknowledgements

The authors would like to thank the following companies for their voluntary support on the round robin test: AMEXCI AB, Audi AG, Brose Fahrzeugteile SE & Co., EOS GmbH, Fraunhofer IGCV, Georgsmarienhütte Holding GmbH (GMH), GKN Powder Metallurgy, Mobiity goes Additive e.V., SLM Solution Group AG, Vostalpine AG. Furthermore, the authors thank: Anatolii Andreiev (University of Paderborn), Anna Yarysh (BAM), Linus Tillmann (MGA), Mirko Schaper (University of Paderborn), Quynh-Hoa Le (BAM), Tobias Stittgen (Ponticon), Dirk Martin (Wildauer Schmiede-und Kurbelwellentechnik / GMH Group

Danksagung

Die Autoren möchten sich bei folgenden Unternehmen für ihr freiwilliges Engagement im Rahmen des Ringversuchs bedanken: AMEXCI AB, Audi AG, Brose Fahrzeugteile SE & Co., EOS GmbH, Fraunhofer IGCV, Georgsmarienhütte Holding GmbH (GMH), GKN Powder Metallurgy, Mobility goes Additive e. V., SLM Solutions Group AG, Vostalpine AG. Außerdem danken die Autoren folgenden Personen: Anatolii Andreiev (Universität Paderborn), Anna Yarysh (BAM), Linus Tillmann (MGA), Mirko Schaper (Universität Paderborn), Quynh-Hoa Le (BAM), Tobias Stittgen (Ponticon), Dirk Martin (Wildauer Schmiede- und Kurbelwellentechnik/GMH Gruppe.

References / Literatur

[1] Aboulkhair, N. T.; Everitt, N. M.; Ashcroft I.; Tuck C.: Additive Manufacturing 1 (2014), pp. 1–4. DOI: 10.1016/j.addma.2014.08.00110.1016/j.addma.2014.08.001Search in Google Scholar

[2] Arun, K.; Aravindh, K.; Raja, K.; Naiju, C. D.; Thrinadh, E.; Ranka S.: SAE Technical Paper, 2018. DOI: 10.4271/2019-28-013410.4271/2019-28-0134Search in Google Scholar

[3] Binder, M.; Fischer, M.; Dietrich, S.; Seidel, C.; Reinhart G.: SSRN Journal, 2020. DOI: 10.2139/ ssrn.372409710.2139/ssrn.3724097Search in Google Scholar

[4] Binder, M.; Dirnhofer, C.; Kindermann, P.; Horn M.; Schmitt, M.; Anstaett, C.; Schlick, G.; Seidel, C.; Reinhart, G.: Procedia CIRP 93 (2020), p. 1304–1309. DOI: 10.1016/j.procir.2020.04. 09010.1016/j.procir.2020.04.090Search in Google Scholar

[5] Verein Deutscher Ingenieure e.V., VDI 3405 Blatt 2.1 Laser-Strahlschmelzen metallischer Bauteile Materialkenndatenblatt Aluminiumlegierung AlSi10Mg, Berlin: Beuth, 2015.Search in Google Scholar

[6] Materialdatenblatt EOS Aluminium AlSi10Mg, EOS, Krailingen, 2014.Search in Google Scholar

[7] Material Data Sheet AL-Alloy AlSi10Mg, SLM Solution, Lübeck.Search in Google Scholar

[8] Li, W.; Li, S.; Liu, J.; Zhang, A.; Zhou, Y.; Wei, Q.; Yan, C.; Shi, Y.: Materials Science and Engineering A 663 (2016), pp. 116–125. DOI: 10.1016/j.msea. 2016.03.08810.1016/j.msea.2016.03.088Search in Google Scholar

[9] Kempf, A.; Hilgenberg, K.: Materials Science and Engineering A 776 (2020), p. 138976. DOI: 10. 1016/j.msea.2020.13897610.1016/j.msea.2020.138976Search in Google Scholar

[10] Kempf, A.; Hilgenberg, K.: Materials Science and Engineering A 818 (2021) 141371. DOI: 10.1016/j. msea.2021.14137110.1016/j.msea.2021.141371Search in Google Scholar

[11] Fischer, C.; Schweizer, C.; Augenstein, E.: Gießereipraxis 9 (2018), pp. 40–48.Search in Google Scholar

[12] Brandão, A. D.; Gumpinger, J.; Gschweitl, M.; Seyfert, C.; Hofbauer, P.; Ghidini, T.: Procedia Structural Integrity 7 (2017), pp. 58–66. DOI: 10.1016/j. prostr.2017.11.06110.1016/j.prostr.2017.11.061Search in Google Scholar

[13] Xu, Z. W.; Wang, Q.; Wang, X. S.; Tan, C. H.; Guo, M. H.; Gao, P. B.: Mechanics of Materials 148 (2020), p. 103499. DOI: 10.1016/j.mechmat. 2020.10349910.1016/j.mechmat. 2020.103499Search in Google Scholar

[14] Forschungskuratorium Maschinenbau, Analytical strength assessment of components: Made of steel, cast iron and aluminium materials: FKM guideline, 7th ed., Frankfurt am Main: VDMA Verlag GmbH, 2021.Search in Google Scholar

[15] Kass, B.; Maaßen, R.; Schneider, D. M.: 37. CADFEM ANSYS Simulation Conference, Kassel, 2019.Search in Google Scholar

[16] Fedina, T.; Sundqvist, J.; Kaplan, A. F.: Materials Today Communications 27 (2021), pp. 102241. DOI: 10.1016/j.mtcomm.2021.10224110.1016/j.mtcomm.2021.102241Search in Google Scholar

[17] Lutter-Günther, M.: Qualitätsorientertes und modellbasiertes Pulverrecycling beim Laserstrahlschmelzen, Dissertation, TU München, München, 2020.Search in Google Scholar

[18] Schneider, M.; Schlingmann, T.; Schmidt, J.; Bettge, D.; Hilgenberg, K.; Binder, M.; Klöden, B.: Proceedings WorldPM 2022, Lyon, 2022, submitted.Search in Google Scholar

[19] Wang, D.; Song, C. H.; Yang, Y. Q.; Bai, Y. C.: Mater. Design 100 (2016), p. 291. DOI: 10.1016/ j.matdes.2016.03.11110.1016/j.matdes.2016.03.111Search in Google Scholar

[20] Godec, M. Z.; Zaefferer, S.; Podgornik, B.; Šinko, M.; Tchernychova, E.: Mater. Charact. 160 (2020), p. 110074. DOI: 10.1016/j.matchar. 2019.11007410.1016/j.matchar.2019.110074Search in Google Scholar

[21] Kou, S.: in Welding Metallurgy, Hoboken, John Wiley & Sons, 2003. DOI: 10.1002/047143402710.1002/0471434027Search in Google Scholar

[22] Sommer, K.; Agudo Jácome, L.; Hesse, R.; Bettge, D.: Advanced Engineering Materials, 2022, submitted.Search in Google Scholar

[23] R. Casati, H. Nasab, Milad, M. Coduri, V. Tirelli und M. Vedani, „Effects of Platform Pre-Heating and Thermal-Treatment Strategies on Properties of AlSi10Mg Alloy Processed by Selective Laser Melting,“ Metals 11 (2018) 8, p. 954. DOI: 10. 3390/met811095410.3390/met8110954Search in Google Scholar

[24] Beiss, P.: Pulvermetallurgische Fertigungstechnik, Vieweg, Berlin, 2013. DOI: 10.1007/978-3642-32032-310.1007/978-3642-32032-3Search in Google Scholar

[25] Schneider, M.: Proceedings Euro PM, Bilbao, 2018.Search in Google Scholar

[26] Adenstedt, R.: Streuung der Schwingfestigkeit, Doctoral Thesis, TU Clausthal, 2001.Search in Google Scholar

[27] Sonsino, C.-M.: Ermittlung anwendungsrelevanter Kenngrößen für Sintermetalle, Fraunhofer Institut für Betriebsfestigkeit, Darmstadt, 1981.Search in Google Scholar

[28] Buxbaum, O.: Betriebsfestigkeit, Stahleisen-Verlag, Düsseldorf, 1992.Search in Google Scholar

[29] Haibach, E.: Betriebsfestigkeit, VDI-Verlag, Düsseldorf, 2006.Search in Google Scholar

Received: 2022-07-01
Accepted: 2022-07-21
Published Online: 2022-09-24
Published in Print: 2022-09-30

© 2022 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 2.6.2023 from https://www.degruyter.com/document/doi/10.1515/pm-2022-1018/html
Scroll to top button