Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 12, 2017

Graphene oxide as a compatibilizer for polyvinyl chloride/rice straw composites

Mohammad Ali Bagherinia , Milad Sheydaei EMAIL logo and Masoud Giahi

Abstract

In this study, polyvinyl chloride (PVC)/rice straw (RS)/graphene oxide (GO) sustainable nanocomposite was prepared using the direct compounding method. Structural, morphological and mechanical properties of fabricated sustainable nanocomposites were compared with unfilled and RS-filled PVC compounds. Mechanical characteristics of PVC decreased with loading RS fibers. The main reason for the mechanical failure of PVC/RS composite is the incompatibility between PVC and RS fibers. GO nanosheets are used here to improve the compatibility between RS fibers and PVC macromolecules. Compared to the neat PVC, maximum strength of the RS/GO-loaded PVC composite increased up to 31%, with incorporating only 1 wt% of GO nanosheets. This enhancement in the mechanical characteristics of PVC/RS/GO nanocomposite can only be due to the role of GO nanosheets as a compatibilizer, as 1 wt% GO loading can only increase the mechanical strength of PVC compounds up to 9%. Fourier transform infrared spectroscopy results are used here to study the nature of these behaviors. It is suggested that the non-covalent and physical interactions between cellulose/hemicellulose portions of RS fibers and GO functional groups result in the enhancement of mechanical characteristics. Consequently, GO can be considered as a new compatibilizer for fabricating high performance PVC-based sustainable nanocomposites.

Acknowledgments

The authors would like to thank the “Research Council of Lahijan Branch – Islamic Azad University” for the financial support of this work.

References

[1] Kiani H, Ashori A, Mozaffari SA. Polym. Bull. 2010, 66, 797–802.10.1007/s00289-010-0381-zSearch in Google Scholar

[2] Gupta BD, Verdu J. J. Polym. Eng. 1988, 8, 73.10.1515/POLYENG.1988.8.1-2.73Search in Google Scholar

[3] Ashori A, Kiani H, Mozaffari SA. J. Appl. Polym. Sci. 2011, 120, 1788–1793.10.1002/app.33378Search in Google Scholar

[4] Fasihi M, Garmabi H. J. Vinyl Addit. Technol. 2011, 17, 112–119.10.1002/vnl.20264Search in Google Scholar

[5] Liu G. J. Polym. Eng. 2014, 34, 201.10.1515/polyeng-2014-0081Search in Google Scholar

[6] Pulngern T, Padyenchean C, Rosarpitak V, Prapruit W, Sombatsompop N. Mater. Des. 2011, 32, 3431–3439.10.1016/j.matdes.2011.02.005Search in Google Scholar

[7] Chand N, Sharma J, Bapat MN. J. Appl. Polym. Sci. 2012, 126, 1105–1111.10.1002/app.36838Search in Google Scholar

[8] Shah BL, Matuana LM, Heiden PA. J. Vinyl Addit. Technol. 2005, 11, 160–165.10.1002/vnl.20056Search in Google Scholar

[9] Yim H, Kim DS. Polym. Adv. Technol. 2012, 23, 1441–1445.10.1002/pat.2065Search in Google Scholar

[10] Matuana LM, Woodhams RT, Balatinecz JJ, Park CB. Polym. Compos. 1998, 19, 446–455.10.1002/pc.10119Search in Google Scholar

[11] Deshmukh K, Joshi GM. Polym. Test. 2014, 34, 211–219.10.1016/j.polymertesting.2014.01.015Search in Google Scholar

[12] Haghighi AH, Sheydaei M, Allahbakhsh A, Ghatarband M, Hosseini FS. J. Therm. Anal. Calorim. 2014, 117, 525–535.10.1007/s10973-014-3752-0Search in Google Scholar

[13] Luong ND, Pahimanolis N, Hippi U, Korhonen JT, Ruokolainen J, Johansson L-S, Nam J-D, Seppälä J. J. Mater. Chem. 2011, 21, 13991.10.1039/c1jm12134kSearch in Google Scholar

[14] Allahbakhsh A, Mazinani S, Kalaee MR, Sharif F. Thermochim. Acta 2013, 563, 22–32.10.1016/j.tca.2013.04.010Search in Google Scholar

[15] Allahbakhsh A, Sharif F, Mazinani S. Nano 2013, 08, 1350045.10.1142/S1793292013500458Search in Google Scholar

[16] Allahbakhsh A, Sheydaei M, Mazinani S, Kalaee M. High Perform. Polym. 2013, 25, 576–583.10.1177/0954008313476314Search in Google Scholar

[17] Hosseini SM, Razzaghi-Kashani M. Polymer 2014, 55, 6426–6434.10.1016/j.polymer.2014.09.073Search in Google Scholar

[18] Allahbakhsh A, Mazinani S. RSC Adv. 2015, 5, 46694–46704.10.1039/C5RA00394FSearch in Google Scholar

[19] Taylan NB, Sari B, Unal HI. J. Polym. Sci., Part B: Polym. Phys. 2010, 48, 1290–1298.10.1002/polb.22023Search in Google Scholar

[20] Yao RS, Li FH. In: Cellulose – Biomass Conversion, Van de Ven T, Kadla J, Eds., InTech: Croatia, 2013, pp 145–158.Search in Google Scholar

[21] Li FH, Hu HJ, Yao RS, Wang H, Li MM. Ind. Eng. Chem. Res. 2012, 51, 6270–6274.10.1021/ie202547wSearch in Google Scholar

[22] Yasuda M, Takeo K, Matsumoto T, Shiragami T, Sugamoto K, Matsushita YI, Ishii Y. In: Sustainable Degradation of Lignocellulosic Biomass – Techniques, Applications and Commercialization, Chandel AK, Silvério da Silva S, Eds., InTech: Croatia, 2013, pp 91–104.Search in Google Scholar

[23] He P, Chai L, Li L, Hao L, Shao L, Lü F. RSC Adv. 2013, 3, 11759.10.1039/c3ra40654gSearch in Google Scholar

[24] Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB. Biotechnol. Bioeng. 2008, 101, 913–925.10.1002/bit.21959Search in Google Scholar

[25] Worasuwannarak N, Sonobe T, Tanthapanichakoon W. J. Anal. Appl. Pyrol. 2007, 78, 265–271.10.1016/j.jaap.2006.08.002Search in Google Scholar

[26] Xiao B, Sun XF, Sun R. Polym. Degrad. Stab. 2001, 74, 307–319.10.1016/S0141-3910(01)00163-XSearch in Google Scholar

[27] Crespo JE, Sanchez L, Garcia D, Lopez J. J. Reinf. Plast. Compos. 2007, 27, 229–243.10.1177/0731684407079479Search in Google Scholar

[28] Kamel S. Polym. Adv. Technol. 2004, 15, 612–616.10.1002/pat.514Search in Google Scholar

[29] Irfan M, Nadeem M, Syed Q. Braz. J. Microbiol. 2014, 45, 457–465.10.1590/S1517-83822014000200012Search in Google Scholar

[30] Oh GH, Yun CH, Park CR. Carbon Sci. 2003, 4, 180–184.Search in Google Scholar

[31] Rajendran S, Uma T. Mater. Lett. 2000, 44, 208–214.10.1016/S0167-577X(00)00029-XSearch in Google Scholar

[32] Theodorou M, Jasse B. J. Polym. Sci., Polym. Phys. Ed. 1983, 21, 2263–2274.10.1002/pol.1983.180211104Search in Google Scholar

[33] Ramesh S, Leen KH, Kumutha K, Arof AK. Spectrochim. Acta, Pt A: Mol. Spectrosc. 2007, 66, 1237–1242.10.1016/j.saa.2006.06.012Search in Google Scholar PubMed

[34] Wu Z, Li S, Liu M, Wang Z, Liu X. RSC Adv. 2015, 5, 11325–11333.10.1039/C4RA14100HSearch in Google Scholar

[35] Rajendran S, Uma T. Ionics 2001, 7, 122–125.10.1007/BF02375478Search in Google Scholar

[36] Matuana LM, Kamdem DP, Zhang J. J. Appl. Polym. Sci. 2001, 80, 1943–1950.10.1002/app.1292Search in Google Scholar

[37] Gönen M, Öztürk S, Balköse D, Okur S, Ülkü S. Ind. Eng. Chem. Res. 2010, 49, 1732–1736.10.1021/ie901437dSearch in Google Scholar

[38] Ulutan S. J. Appl. Polym. Sci. 2003, 90, 3994–3999.10.1002/app.13133Search in Google Scholar

[39] Peprnicek T, Kalendova A, Pavlova E, Simonik J, Duchet J, Gerard JF. Polym. Degrad. Stab. 2006, 91, 3322–3329.10.1016/j.polymdegradstab.2006.06.008Search in Google Scholar

[40] Yang H, Yan R, Chen H, Lee DH, Zheng C. Fuel 2007, 86, 1781–1788.10.1016/j.fuel.2006.12.013Search in Google Scholar

[41] Fu P, Hu S, Xiang J, Sun L, Yang T, Zhang A, Zhang J. Chin. J. Chem. Eng. 2009, 17, 522–529.10.1016/S1004-9541(08)60240-2Search in Google Scholar

[42] Hsu TC, Guo GL, Chen WH, Hwang WS. Bioresour. Technol. 2010, 101, 4907–4913.10.1016/j.biortech.2009.10.009Search in Google Scholar PubMed

[43] Chen X, Yu J, Zhang Z, Lu C. Carbohydr. Polym. 2011, 85, 245–250.10.1016/j.carbpol.2011.02.022Search in Google Scholar

[44] Liu Y, Reineke TM. Biomacromolecules 2010, 11, 316–325.10.1021/bm9008233Search in Google Scholar

[45] Meszlényi G, Körtvélyessy G. Polym. Test. 1999, 18, 551–557.10.1016/S0142-9418(98)00053-1Search in Google Scholar

[46] Majumder S, Bhuiyan AH. Polym. Sci. Ser A 2011, 53, 85–91.10.1134/S0965545X11010081Search in Google Scholar

Received: 2016-7-1
Accepted: 2016-10-3
Published Online: 2017-4-12
Published in Print: 2017-8-28

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.12.2022 from https://www.degruyter.com/document/doi/10.1515/polyeng-2016-0249/html
Scroll Up Arrow